Access Control and the
Filesystem

CSC 510



Unix Access Control Rules

m Access control decisions are based on which user is attempting
to perform an action

m Objects have owners who have broad control over the objects.
(Here objects are files, processes, etc.

m The user owns the objects that user creates

m There is a special user called “root” that can act as the owner
of any object and perform administrative operations



Filesystem Access Control

m In the classic model, all files have an owner and a group.

m The "Is -I" command provides a long listing that includes
information about owners, groups, and permissions

m The permissions are listed as a 10 character string

The first character represents the file's type and mode
Characters 2-4 represent the owner's read, write, and execute
permissions

Characters 5-7 represent the group's read, write, and execute
permissions

Characters 8-10 represent other (global) read, write, and
execute permissions



File Types

File Type Symbol Created By
Regular file - editors, cp, etc.
Directory d mkdir

Character device c mknod

Block device b mknod

Local domain socker S socket system call
Named pipe o) mkfifo

Symbolic link 1 1n




The chmod command

m The chmod command can change the mode (permissions) of a
file, the first argument is the permissions (in octal or mnemonic
syntax) and the arguments that follow are files that should be

changed

m Octal permission bits

Octal Binary Perm Octal Binary Perm
0 000 --- 4 100 r--
1 001 -x 5 101 r-x
2 010 -w- 6 110 V-
3 011 -WX 7 111 rWx

m Example: chmod 711 myfile sets all permissions for the user
(owner) and execute only permission to everyone else



The chmod command (continued)

m chmod mnemonic syntax: combine a set of targets with an
operator and a set of permissions (see the man page for details)

m Examples

utw adds w to the owner
ug=rw,o=r gives r/w to owner and group, and r for others
a-x removes x for all categories

g=u sets the group to be the same as the owner




Special Permissions

user + s (SUID) — executes a file as the owner of the file
regardless of the user running the program

group + s (SGID) — if set on a file, allows the file to be
executed as the group that ownd the file. If set on a directory,
any files created in the directory will have the group set to the
directory owner.

other 4 t (sticky) — when set on a directory, restricts deletion
of files; only the owner of the file can delete the file.

Note: when listed with “Is” these settings take place in the
execute bit location



Setting Special Permissions

m The octal method adds a digit to the beginning of the setting:
0 no change, 1 sticky, 2 SGID, and 4 SUID.

m Example: chmod 2770 dir sets the SGID bit on dir

m The mnemonic method uses s for SUID and SGID, and t for
sticky



Process Ownership

m The owner of a process can send signals to the process (see the
kill man page)

m A process has multiple identities associated with it:
m Real UID/GID: the real user/group that started the process

m Effective UID/GID: the user/group that the process is running
as for access control purposes (normally the same as the real
UID/GID)

m Saved UID/GID: IDs that are available for the process to invoke.
Typically used when a process running with elevated privileges
needs to perform some under-privileged work so the process can
switch back and forth



Management of Root Privileges

m root login: root is user on the system with a password (usually
a bad idea and some systems default to disabling the root
password)

m su command: login as a regular user, then switch to the root
user. An advantage of this approach is that this gets logged
(but root still has a password)

m sudo command: run a single command as root

m consults the /etc/sudoers file to determine if the command
can be performed by the user (see the sudoers man page for the
file format)

m keeps a log of executed commands



