
Access Control and the
Filesystem

CSC 510



Unix Access Control Rules

Access control decisions are based on which user is attempting
to perform an action

Objects have owners who have broad control over the objects.
(Here objects are files, processes, etc.

The user owns the objects that user creates

There is a special user called “root” that can act as the owner
of any object and perform administrative operations



Filesystem Access Control

In the classic model, all files have an owner and a group.

The “ls -l” command provides a long listing that includes
information about owners, groups, and permissions

The permissions are listed as a 10 character string
The first character represents the file’s type and mode
Characters 2-4 represent the owner’s read, write, and execute
permissions
Characters 5-7 represent the group’s read, write, and execute
permissions
Characters 8-10 represent other (global) read, write, and
execute permissions



File Types

File Type Symbol Created By

Regular file - editors, cp, etc.
Directory d mkdir
Character device c mknod
Block device b mknod
Local domain socker s socket system call
Named pipe p mkfifo
Symbolic link l ln



The chmod command
The chmod command can change the mode (permissions) of a
file, the first argument is the permissions (in octal or mnemonic
syntax) and the arguments that follow are files that should be
changed

Octal permission bits

Octal Binary Perm Octal Binary Perm

0 000 --- 4 100 r--
1 001 --x 5 101 r-x
2 010 -w- 6 110 rw-
3 011 -wx 7 111 rwx

Example: chmod 711 myfile sets all permissions for the user
(owner) and execute only permission to everyone else



The chmod command (continued)

chmod mnemonic syntax: combine a set of targets with an
operator and a set of permissions (see the man page for details)

Examples

u+w adds w to the owner
ug=rw,o=r gives r/w to owner and group, and r for others
a-x removes x for all categories
g=u sets the group to be the same as the owner



Special Permissions

user + s (SUID) – executes a file as the owner of the file
regardless of the user running the program

group + s (SGID) – if set on a file, allows the file to be
executed as the group that ownd the file. If set on a directory,
any files created in the directory will have the group set to the
directory owner.

other + t (sticky) – when set on a directory, restricts deletion
of files; only the owner of the file can delete the file.

Note: when listed with “ls” these settings take place in the
execute bit location



Setting Special Permissions

The octal method adds a digit to the beginning of the setting:
0 no change, 1 sticky, 2 SGID, and 4 SUID.

Example: chmod 2770 dir sets the SGID bit on dir

The mnemonic method uses s for SUID and SGID, and t for
sticky



Process Ownership

The owner of a process can send signals to the process (see the
kill man page)

A process has multiple identities associated with it:
Real UID/GID: the real user/group that started the process

Effective UID/GID: the user/group that the process is running
as for access control purposes (normally the same as the real
UID/GID)

Saved UID/GID: IDs that are available for the process to invoke.
Typically used when a process running with elevated privileges
needs to perform some under-privileged work so the process can
switch back and forth



Management of Root Privileges

root login: root is user on the system with a password (usually
a bad idea and some systems default to disabling the root
password)

su command: login as a regular user, then switch to the root
user. An advantage of this approach is that this gets logged
(but root still has a password)

sudo command: run a single command as root
consults the /etc/sudoers file to determine if the command
can be performed by the user (see the sudoers man page for the
file format)
keeps a log of executed commands


