
New and Emerging Process
Methodologies

CSC 354, Software Engineering I



Chapter 5: New and Emerging Process
Methodologies



Problems with “Traditional” Processes

Focused on and oriented towards “large projects” and lengthy
development time – years

Inability to cope with changes in requirements and technology
fast enough

Assumes requirements are completely understood at the
beginning of the project



Problems with “Traditional” Processes
(continued)

Relying on non-sustainable heroic and lengthy development
effort by developers

Complex set of activities

Duplication of effort, especially in documentation



The Agile Manifesto

“We are uncovering better ways of developing software by
doing it and helping others to it. That is, while there is
value in the items on the”right,” we value the items on the
“left” more.”

“left” “right”

Individuals and interactions Processes and Tools
Working software Comprehensive documentation
Customer collaboration Contract Negotiation
Responding to change Following a plan



More Recent Processes: Agile
Methodologies

Family of software development methodologies:
Short releases and multiple iterations
Incremental design/development
User involvement – especially for in-house
Minimal documentation
Assume changes



Some Agile Methodologies

Extreme Programming (XP): most popular

Crystal Clear/Orange: one size does not fit all

Scrum: currently popular; not really part of Agile (partially
Agile)

Rational Unified Process (RUP): heavy process

Kanban: visual cards for tasks; minimize work-in-progress



Extreme Programming Core Values

Communication: between team and with customers

Simplicity: in design and code

Feedback: at many levels, team and customer

Courage: to make and implement difficult decisions



Extreme Programming Fundamental
Principles

Rapid feedback through unit testing, integration, and short
releases

Simplicity: happy path first

Incremental change: small changes add up

Embrace change: preserve options

Quality work: do the best work all the time



Extreme Programming Lesser/Other
Principles

Ongoing learning
Playing to win
Open, honest communication
Concrete experiments
Traveling light
Working with people’s instincts
Accepting responsibility
Honest measurement
Local adaptation
Small initial investment



Extreme Programming (XP)

XP takes an “extreme” approach to iterative development
New versions may be built several times per day

Increments are delivered to customers every two weeks

All tests must be run for every build and the build is only
accepted if tests are successful



XP’s 12 Key Practices

1 Planning Game: small units of requirements

2 Onsite Customer: immediate and better feedback

3 Metaphor: use one set of metaphors for design/architecture

4 Simple Design: just enough to cover what is needed

5 Coding Standard: facilitates better communication

6 Collective Code Ownership: peer pressure to improve code



XP’s 12 Key Practices (continued)

7 Pair Programming: feedback and shared improvements

8 Refactoring: continuous examination for duplicative
design/code

9 Continuous Functional and Unit Testings: 100% completion

10 Small/Short Releases

11 Continuous Integration

12 40 Hour Work: high morale and energy level



Extreme Programming Release Cycle



Scrum Development Process

Introduced by Takeuchi and Nonaka in 1986 modeled after the
way a rugby game is played

Ken Schwaber and Mike Beedle published a book, “Agile
Software Development with Scrum,” in 2001

It is an incremental and iterative approach
Develops small sprints, or increments (of features) in short
cycles of about 2-3 weeks



Scrum Development Process

There are three main roles
Product Owner who talks to and decides with users about the
content of each sprint

Scrum Master who runs the sprints

Scrum Team of about 7-8 members who develop the sprint



Scrum Sprint Cycle



Scrum

Answer these three questions:
1 What did you get done last time?

2 What are you going to do this time?

3 Any blockers?

Note “time” can be arbitrary, usually a day or week



Scrum Benefits

The product is broken into a set of manageable and
understandable chunks

Unstable requirements do not hold up progress

The whole team have visibility into everything and
consequently team communication is improved

Customers see on-time delivery of increments and gain
feedback on how the product works

Trust between customers and developers is established and a
positive culture is created in which everyone expects the project
to succeed


