
Creating a Program
CSC 354, Software Engineering I



Chapter 1: Creating a Program



Creating a Program

We all “start” by learning how to write code in some
programming language.

Typically, with a small, hypothetical, and fairly well-defined
problem.

Usually the code in within one module.



Considerations and Decisions

Problem Statement: “Given a collection of lines of text
(strings) stored in a file, sort them into alphabetical order, and
write them to another file.”



Considerations and Decisions

What are the program requirements?
Input formats?
Sorting?
Special cases, boundaries, and error conditions?
Performance?
Real-time?
Security?
. . .



Considerations and Decisions

What are the design constraints?
User interface?
Typical and maximum input sizes?
Platforms?
Schedule?



Creating a Program

We learn that the program usually does not work on the first
try (and probably many tries after)

We learn about testing the program

We learn about re-reading and re-thinking the (problem)
requirements more carefully – then we find we may not have all
the answers

We learn about tracing and debugging the program

Then at some point we decide that it is “good enough”



More to Consider and Decide

Testing time
While the program is defined
While the program is developed
After program is completed

Kinds of tests
Acceptance (validation)
Verification
Unit testing
Black box
White box



Code is “Done” – What Else Matters?

How long (elapsed time) did it take to complete the work?

How much effort (total person hours) is expended to do the
work?

Does the solution solve the complete problem?

How “good” is the work – (code, design, documentation,
testing, etc.)



How Long Does it Take?

Recall: “write a program that reads lines from one file and
writes the sorted lines to another file”

Possible outline:
get the file (what language?)
read the file
sort the file alphabetically (asc? desc?)
write the file
close the file

File contents to test: random words, special characters, blanks,
different cases



How Long does it Take?

Version 1: estimate the ideal total time (within 1 min); assume
that you can work only on this one task, with no interruptions.

Version 2: estimate when you think you will have the program
done to hand over to the client

Version 3: Divide the entire program into separate
developmental tasks; these tasks might be divided into several
subtasks. The current task is a planning task that has
estimation as a subtask



Actual Time Creating the Program

Design and implement your solution while keeping track of the
time

Started Ended Breaks Time

Planning
Sort
Read
Write
User interface
Testing
Total



Planned versus Actual

“Imagined” – Ideal

“Actual” – Happening



Future Consideration: Tools


