Creating a Program
CSC 354, Software Engineering |

Chapter 1: Creating a Program

8 NAVIGATED

Creating a Program

m We all “start” by learning how to write code in some
programming language.

m Typically, with a small, hypothetical, and fairly well-defined
problem.

m Usually the code in within one module.

Considerations and Decisions

m Problem Statement: “Given a collection of lines of text
(strings) stored in a file, sort them into alphabetical order, and
write them to another file."

Considerations and Decisions

m What are the program requirements?
m Input formats?
Sorting?
Special cases, boundaries, and error conditions?
Performance?
Real-time?
Security?

Considerations and Decisions

m What are the design constraints?
User interface?

Typical and maximum input sizes?
Platforms?

Schedule?

Creating a Program

m We learn that the program usually does not work on the first
try (and probably many tries after)

m We learn about testing the program

m We learn about re-reading and re-thinking the (problem)
requirements more carefully — then we find we may not have all
the answers

m We learn about tracing and debugging the program

m Then at some point we decide that it is “good enough”

More to Consider and Decide

m Testing time
m While the program is defined
m While the program is developed
m After program is completed
m Kinds of tests
m Acceptance (validation)
m Verification
m Unit testing
m Black box
m White box

Code is “Done” — What Else Matters?

m How long (elapsed time) did it take to complete the work?

m How much effort (total person hours) is expended to do the
work?

m Does the solution solve the complete problem?

m How “good” is the work — (code, design, documentation,
testing, etc.)

How Long Does it Take?

m Recall: “write a program that reads lines from one file and
writes the sorted lines to another file”

m Possible outline:

get the file (what language?)

read the file

sort the file alphabetically (asc? desc?)
write the file

close the file

m File contents to test: random words, special characters, blanks,
different cases

How Long does it Take?

m Version 1: estimate the ideal total time (within 1 min); assume
that you can work only on this one task, with no interruptions.

m Version 2: estimate when you think you will have the program
done to hand over to the client

m Version 3: Divide the entire program into separate
developmental tasks; these tasks might be divided into several
subtasks. The current task is a planning task that has
estimation as a subtask

Actual Time Creating the Program

m Design and implement your solution while keeping track of the
time

Started Ended Breaks Time

Planning

Sort

Read

Write

User interface
Testing

Total

Planned versus Actual

m “Imagined” — Ideal

Problem
Definition/
Understanding

Solution

Design

Actual” — Happening

Problem
Definition/
Understanding

—_—

N

Solution
Design

XN

Future Consideration: Tools

Sasana @pivotalTracker a 35" F—
drawio w(<, Lucidchart . ki
*planio @Je ns
Flowdock

CODESHIP buddy circleci @Traws c '7 == Azure
Googe Drive E Wrike < lit Google CioudPatform

/] Office Geogevoes spir
e <[gliffy

(XU) ReLeAse h

herokw

&V DepLoy
puppet cuher
Basecam) A
“ " % 5 (D rackspace
@l oo 5y
! infi %\ gOpsGenie *
+- zoominfo. 3
matters’ __ g __ pagerduty
% slack § BlueJeans
Q2 .
AN CODE CLIMATE 0\37 O NewRelic. ”snyk
08“ L 2 < wbugsnag Nagios’
; i splunk> L@GGLY
lFrog == @ SAUCELABS
1

FitNesse servicenow TestFairy
Feesse) (RO
kubernetes docker GitHub @

-RAYGUN o
zendesk @Jasmine &) SENTRY ‘3 &

o) dynatrace
INTERCOM ﬂOﬂ\ CRM o
! cucumber riRollbar

o0 ZZPHYR
Visual Studi & Sonatype @ eshdesk Bmwserslack 5
‘Team Foundation Server (@freshde: QMETRY’ D

AboG bigpanda

APPDYNAMICS

g B OMNI [:]SoucceClear

