Building a System

CSC 354, Software Engineering |

Chapter 3: Building a System

8 NAVIGATED

Class Questions

m What is the most complex problem you have worked on?
m What was the most difficult part?

m How much design did you do before coding?

Building a System

m We are moving from writing a program to building a system
m The difference is complexity
m Breadth of complexity

m Depth of complexity

Complexity

m An increase in the size and complexity of a problem leads to

m An increase in effort due to the size and complexity, which
leads to

m An increase in the size and complexity of the solution.

Complexity (continued)

More functionalities

More features within each functionality

More varieties of interfaces (internal and/or external)
More users and varieties of users

More data, varieties of data, and/or data structures

More linkages and connections

m Data sharing among functionalities and logic
m Control passing among functionalities

Complexity (aside)

m Essential complexity: how difficult something is to do regardless
of how experienced you are, what tools you use or what new
and flashy architecture pattern you used to solve the problem.

m Accidental complexity: non-essential complexity that is
introduced into the design by mistake.

m Incidental complexity: non-essential complexity that is
introduced into the design by mistake or on purpose.

Ways of Handling Complexity

m Simplification
m Improving technology and tools

m Improving processes and methodologies

Handling Complexity: Simplification

Decomposition of the problem and the solution
m Modularization of the solution

Separation of concerns of the problem and solution

m Incrementally resolve problems

Handling Complexity: Improving
Technology and Tools

Database management systems to handle information and
structures of information

Programming and development platforms
Computing network

Multi-developer configuration management
Modeling techniques of the problem and solution
Automated testing

Note: there is a learning curve, so the first time you use these
it will initially be more complex

Handling Complexity: Improving Process
and Methodologies

m Coordinate multiple different people performing different tasks
m Guidance for overlapping incremental tasks
m Guidance for measuring separate artifacts and outcomes

Note: the first time you add a process it will initially be more
complex

Task Breakdown Example

Software Project Management
(planning, organizing, measuring, adjusting)

Requirements
gathering, definition Design Code/Unit Test
and specification

Integration User Support &
and Test Problem Fixes
m Questions:

m Who performs what task?

m How is the task completed and with what technique or tool?
m When should each task start and end?

m Who should coordinate the people and the tasks?

lterative Process Example

| Software Develop Plan (SDP) |

| Understanding the Broad Problem (Req.) |

| Architecture and High Level Design

Test/ Fix Test/ Fix

“Non-Technical” Considerations

m Effort and Schedule Expansion
m How does one estimate and handle this?

m Assignment and Communications Expansion
m More people, more communication issues
m Do we need some process?
m Do we need some tools?

Building a Large, Complex System

m Mission-critical systems require

Several separate activities performed by
Multiple people

m Tasks

Requirements: gathering, analysis specification, and agreement
Design: abstraction, decomposition, cohesion, interaction, and
coupling analysis

Implementation: coding and unit testing

Integration and tracking of parts

Separate testing: functional, performance, etc.

Packaging and releasing the system

Supporting the System

m Pre-release: prepare for education and support
m number of expected users
m number of known problems and expected quality
m amount of user and support personnel training
m number of fixes and maintenance cycle
m Post-release: user and customer support
m Call center and problem resolutions
m major problem fixes and code changes
m Functional modifications and enhancements

Coordination

m Because there are
H more parts,
m more developers, and
m more users to consider in large systems
m There is the need for coordination (3 Ps):
m Processes and methodologies to be used
m Final product and intermediate artifacts
m People (developers, support personnel, and users)

