
Building a System
CSC 354, Software Engineering I



Chapter 3: Building a System



Class Questions

What is the most complex problem you have worked on?

What was the most difficult part?

How much design did you do before coding?



Building a System

We are moving from writing a program to building a system

The difference is complexity
Breadth of complexity

Depth of complexity



Complexity

An increase in the size and complexity of a problem leads to

An increase in effort due to the size and complexity, which
leads to

An increase in the size and complexity of the solution.



Complexity (continued)

More functionalities

More features within each functionality

More varieties of interfaces (internal and/or external)

More users and varieties of users

More data, varieties of data, and/or data structures

More linkages and connections
Data sharing among functionalities and logic
Control passing among functionalities



Complexity (aside)

Essential complexity: how difficult something is to do regardless
of how experienced you are, what tools you use or what new
and flashy architecture pattern you used to solve the problem.

Accidental complexity: non-essential complexity that is
introduced into the design by mistake.

Incidental complexity: non-essential complexity that is
introduced into the design by mistake or on purpose.



Ways of Handling Complexity

Simplification

Improving technology and tools

Improving processes and methodologies



Handling Complexity: Simplification

Decomposition of the problem and the solution

Modularization of the solution

Separation of concerns of the problem and solution

Incrementally resolve problems



Handling Complexity: Improving
Technology and Tools

Database management systems to handle information and
structures of information

Programming and development platforms

Computing network

Multi-developer configuration management

Modeling techniques of the problem and solution

Automated testing

Note: there is a learning curve, so the first time you use these
it will initially be more complex



Handling Complexity: Improving Process
and Methodologies

Coordinate multiple different people performing different tasks

Guidance for overlapping incremental tasks

Guidance for measuring separate artifacts and outcomes

Note: the first time you add a process it will initially be more
complex



Task Breakdown Example

Questions:
Who performs what task?
How is the task completed and with what technique or tool?
When should each task start and end?
Who should coordinate the people and the tasks?



Iterative Process Example



“Non-Technical” Considerations

Effort and Schedule Expansion
How does one estimate and handle this?

Assignment and Communications Expansion
More people, more communication issues
Do we need some process?
Do we need some tools?



Building a Large, Complex System

Mission-critical systems require
1 Several separate activities performed by
2 Multiple people

Tasks
Requirements: gathering, analysis specification, and agreement
Design: abstraction, decomposition, cohesion, interaction, and
coupling analysis
Implementation: coding and unit testing
Integration and tracking of parts
Separate testing: functional, performance, etc.
Packaging and releasing the system



Supporting the System

Pre-release: prepare for education and support
number of expected users
number of known problems and expected quality
amount of user and support personnel training
number of fixes and maintenance cycle

Post-release: user and customer support
Call center and problem resolutions
major problem fixes and code changes
Functional modifications and enhancements



Coordination

Because there are
more parts,
more developers, and
more users to consider in large systems

There is the need for coordination (3 Ps):
Processes and methodologies to be used
Final product and intermediate artifacts
People (developers, support personnel, and users)


