Testing and Quality Assurance
CSC 355, Software Engineering |l



Chapter 10: Testing and Quality Assurance




Objectives

m Understand the basic techniques for software verification and
validation

m Analyze basics of software testing and testing techniques

m Discuss the concept of “inspection” process



Levels of Testing

m Order test cases are written
System
Integration/Component
Functional
Unit

m Order test cases are executed
Unit
Functional
Integration/Component
A System



Quality Product

m How do you know if something is a quality product?
m What products do you think about when you hear “Quality”?
m Why?



Quality Product

Is quality verified throughout the process?
Is there a process for testing?

Is the team proud of the product?

Does it meet specifications?

Is it “fit for use"?



What is Quality?

m Quality Assurance
m measure quality
m improve quality
m team training
m Quality Control
m verify quality
m detect errors
m fix errors (prior to release)



What is Quality?

m Verification

m checking software conforms to its requirements

m is the system correct, according to the specifications?
m Validation

m checking software meets user requirements

m are we building the correct system?



Looking for Errors

m Testing
m test cases verify output is correct
m Inspection and reviews
m review of models, specifications, documents, and code
m design reviews
m code walkthroughs



Looking for Errors

m Formal Methods

m mathematically “proven” correct
m Static analysis

m automated “checker”

m looking for error-prone conditions



Types of Errors

m Error
m a mistake made by a developer
m Fault (defect, bug)
m result of an error; condition that may cause a failure in the
system
m Failure (problem)
m inability of system to perform according to its specification due
to some fault



Prioritizing Errors

m Fault or failure severity
m based on consequences
m blocker / critical / major / minor / trivial
m Fault or failure priority
m based on importance of developing a fix
m critical / high / medium / low / won't fix



Levels of Testing

m What is tested?
m Unit code testing
m Functional code testing
m System testing (regression testing)
m User interface testing
m Acceptance testing



Testing

m Activity performed for:

m Evaluating product quality
m Improving products by identifying defects and having them fixed
prior to software release

m Dynamic (running program) verification of program's behavior
on a finite set of test cases selected from execution domain

m Testing can not prove product works 100%



Testing

m Why test?
m Acceptance (customer)
m Conformance (std, laws, etc.)
m Configuration (user vs. dev.)
m Performance, stress, security, etc.



Testing

m How (test cases designed)?
m Intuition
m Specification based (black box)
m Code based (white box)
m Existing cases (regression)



Testing Responsibilities

m Who tests?
m Programmers
m Testers / Requirements Analyst
m Users (beta group)



Levels of Testing

Unit test

Functional test

Unit test

Component test

System/regression
test

Component test

Functional test

Unit test



When to Stop Testing?

m Simple answer: stop when
m all planned test cases are executed
m all problems that are found are fixed
m Not when you ran out of time (poor planning)
m Build time for all levels of testing in the program plan



System Testing

m Performed from the end user’'s perspective

m Run these tests after unit, functional, and component tests are
successful

m Based on Software Requirements Specification



Unit Testing

m Test each individual unit (method, class, file, ..
m Usually done by the programmer
m Test each unit as it is developed (small chunks)

m Keep test cases / results around

m allows for regression testing
m facilitates refactoring
m tests become documentation

)



