
Implementation
CSC 355, Software Engineering II



Chapter 8: Design: Implementation



Implementation Topics

1 Describe:
characteristics of good implementations
best practices to achieve them

2 Understand the role of comments

3 Learn debugging techniques

4 Analyze refactoring

5 Plan for reuse



Introduction

Implementation: transforming detailed design into a valid
program

Detailed design may be done as part of the implementation
Pro: faster
Con: less cohesive and less organized

Includes: writing code, unit testing, debugging, configuration
management



Characteristics of Good Implementations

Readability - easy to read by others

Maintainability - easy to maintain by others

Performance - fast, efficient, load

Traceability - according to RTM

Correctness - according to RTM

Completeness - according to RTM



Coding Guidelines

Organization specific

Important for consistency

Programmers can get used to them easily

Usually mandate:
Indentation style and formatting
Naming conventions (for files, variables, etc.)
Language features to use or avoid (pointers, warnings)



Style Issues

Naming:
convey meaning
be consistent
rule of thumb: if you cannot think of a good name, then you
might not understand the problem or the design can be
improved
Internationalization (for example, what date is this? 4/6/2022)

Word separation and capitalization
snake_case
camelCase



Style Issues (continued)

Indentation and spacing

Function size
when is it too big> when to break?

File naming

Error-prone constructs



Code Comments

Types of comments:
explanation of the code -> refactor
marker in the code -> version control
summary of the code (flow of events)
description of intent
external references

Document the “why”, not the “how”; the code itself is the
“how”

Make sure to keep the comments up-to-date.



Debugging

Locating and fixing errors in code

Errors noticed by testing, inspection, use

Phases:
reproduction - specific test cases
localization - isolate source of bug
correction - fix without breaking more
verification - run test cases



Debugging (continued)

Heuristics:
some routines will have many errors
routines with an error tend to have more
new code tends to have more errors
particular ones (for example language specific)



Debugging (continued)

Tools
Code comparators
Extended checkers (linters)
Interactive debuggers
Debugging libraries
Others: profilers, test coverage, etc.



Assertions

Pre-condition: condition a module requires in order to work

Post-condition: condition that should be true if your module
worked

Assertion: executable statement that checks a condition and
produces an error if it is not met

Assertions are supported in many languages



Performance Optimization

Performance trade-offs:
readability
maintainability

Correctness is usually more important

Profiler: runs a program an calculates how much time it spends
on each part

Cost-benefit analysis

Measure before “optimizing”



Refactoring

Goal: improve code quality without affecting its behavior

Code “smells”
duplicated code
long function/method definitions
large classes
depth of control constructs

Refactorings
change algorithms
extract functions
extract classes
use a different abstraction



Code Reuse

Do not reinvent the wheel

Take advantage of libraries

Start with design patterns

Design for reuse


