Implementation
CSC 355, Software Engineering |l



Chapter 8: Design: Implementation

8 NAVIGATED




Implementation Topics

Describe:

m characteristics of good implementations
m best practices to achieve them

Understand the role of comments
Learn debugging techniques
Analyze refactoring

Plan for reuse



Introduction

m Implementation: transforming detailed design into a valid
program

m Detailed design may be done as part of the implementation

m Pro: faster
m Con: less cohesive and less organized

m Includes: writing code, unit testing, debugging, configuration
management



Characteristics of Good Implementations

Readability - easy to read by others
m Maintainability - easy to maintain by others

Performance - fast, efficient, load

Traceability - according to RTM

m Correctness - according to RTM

Completeness - according to RTM



Coding Guidelines

Organization specific
Important for consistency
Programmers can get used to them easily

Usually mandate:

m Indentation style and formatting
m Naming conventions (for files, variables, etc.)
m Language features to use or avoid (pointers, warnings)



Style Issues

m Naming:
m convey meaning
m be consistent
m rule of thumb: if you cannot think of a good name, then you
might not understand the problem or the design can be
improved
m Internationalization (for example, what date is this? 4/6/2022)
m Word separation and capitalization
m snake_case
m camelCase



Style Issues (continued)

Indentation and spacing
Function size

m when is it too big> when to break?
File naming

Error-prone constructs



Code Comments

m Types of comments:

explanation of the code -> refactor
marker in the code -> version control
summary of the code (flow of events)
description of intent

external references

m Document the “why”, not the "how"; the code itself is the
“how”

m Make sure to keep the comments up-to-date.



Debugging

m Locating and fixing errors in code

m Errors noticed by testing, inspection, use

m Phases:
m reproduction - specific test cases
m localization - isolate source of bug
m correction - fix without breaking more
m verification - run test cases



Debugging (continued)

m Heuristics:
m some routines will have many errors
m routines with an error tend to have more
m new code tends to have more errors
m particular ones (for example language specific)



Debugging (continued)

m Tools
m Code comparators
Extended checkers (linters)
Interactive debuggers
Debugging libraries
Others: profilers, test coverage, etc.



Assertions

m Pre-condition: condition a module requires in order to work

m Post-condition: condition that should be true if your module
worked

m Assertion: executable statement that checks a condition and
produces an error if it is not met

m Assertions are supported in many languages



Performance Optimization

Performance trade-offs:

m readability
m maintainability

Correctness is usually more important

Profiler: runs a program an calculates how much time it spends
on each part

Cost-benefit analysis

Measure before “optimizing”



Refactoring

m Goal: improve code quality without affecting its behavior
m Code “smells”

duplicated code

long function/method definitions
large classes

depth of control constructs

m Refactorings

change algorithms
extract functions

extract classes

use a different abstraction



Code Reuse

m Do not reinvent the wheel
m Take advantage of libraries
m Start with design patterns

m Design for reuse



