Object Oriented
Programming Concepts

CSC 243 - Java Programming



Object Oriented Programming

m The main task of a programmer is to solve problems

m Object Oriented Programming (OOP) is one way to model and
solve problems

m OOP models problems using objects (nouns) containing data
and methods (verbs) that perform operations on the data



Introduction to UML Class Diagrams

m A Unified Modeling Language (UML) Class diagram describes
implementation information about a class

m The first compartment contains the class name

The center (optional) compartment contains data attributes

The lower (optional) compartment contains methods

The (—) denotes a private modifier and (+) denotes a public
modifier

ClassName

- attribute1
- attribute?2

+ method1
+ method?2




Introduction to UML Class Diagrams

m Type information is described using colons:

ClassName

- attribute1: type
- attribute2: type

+ method1(): type
+ method2(param: type): type




Class Abstraction and Encapsulation

m Class abstraction separates class implementation from class
usage

m A class's contract is the collection of public methods and
attributes and a description of the expected behavior of the
public members

m Class encapsulation is hiding the implementation details of
public methods from the client code that uses these methods



Advantages of Encapsulation

m Client code does not need to know the implementation details
of a class in order to use it

m The implementation of the class methods can change without
breaking existing client code

m Compiled class code can be reused in many applications



Class Relationships

m Association: describes an activity between two classes

m Aggregation: an association relationship that represents
ownership

m The owner object is called an aggregating object
m The owner class is called an aggregating class
m The owned object is called an aggregated object

m The owned class is called an aggregated class

m Composition: A special case of the aggregation relationship
where the aggregating object exclusively owns the aggregated
object

m Inheritance



UML Association Relationship

name

{Class1} & {Class2}

m The label of the edge denotes the name of the relationship

m The annotations on the head and tail of an edge denote
multiplicity

m Multiplicity specifies how many objects are involved in the
relationship

m A multiplicity of * denotes an unlimited number of objects



UML Association Relationship Example

takes c teaches
060 ourse i ] Faculty

Student

m A student may take any number of courses

m Each course must have at least 10 students and at most 60
students

m Each course is taught by one faculty member

m A faculty member may teach between 0 and 4 courses per
semester



Modeling the Example Relationship

Student Faculty
- courselist: Course([] - courselist: Course[]
+ addCourse(c: Course): void + addCourse(c: Course): void
Course

- classList: Student(]
-faculty: Faculty
+ addStudent(s: Student): void
+ setFaculty(f: Faculty): void




UML Aggregation and Composition
Example

Name ﬁ«t Student Gﬁ Address

m Aggregation is denoted by a open diamond attached to the
aggregating class

m Composition is denoted by a filled diamond attached to the
aggregating class



