
Object Oriented
Programming Concepts

CSC 243 - Java Programming



Object Oriented Programming

The main task of a programmer is to solve problems

Object Oriented Programming (OOP) is one way to model and
solve problems

OOP models problems using objects (nouns) containing data
and methods (verbs) that perform operations on the data



Introduction to UML Class Diagrams
A Unified Modeling Language (UML) Class diagram describes
implementation information about a class

The first compartment contains the class name

The center (optional) compartment contains data attributes

The lower (optional) compartment contains methods

The (−) denotes a private modifier and (+) denotes a public
modifier



Introduction to UML Class Diagrams

Type information is described using colons:



Class Abstraction and Encapsulation

Class abstraction separates class implementation from class
usage

A class’s contract is the collection of public methods and
attributes and a description of the expected behavior of the
public members

Class encapsulation is hiding the implementation details of
public methods from the client code that uses these methods



Advantages of Encapsulation

Client code does not need to know the implementation details
of a class in order to use it

The implementation of the class methods can change without
breaking existing client code

Compiled class code can be reused in many applications



Class Relationships

Association: describes an activity between two classes

Aggregation: an association relationship that represents
ownership

The owner object is called an aggregating object

The owner class is called an aggregating class

The owned object is called an aggregated object

The owned class is called an aggregated class

Composition: A special case of the aggregation relationship
where the aggregating object exclusively owns the aggregated
object

Inheritance



UML Association Relationship

The label of the edge denotes the name of the relationship

The annotations on the head and tail of an edge denote
multiplicity

Multiplicity specifies how many objects are involved in the
relationship

A multiplicity of * denotes an unlimited number of objects



UML Association Relationship Example

A student may take any number of courses

Each course must have at least 10 students and at most 60
students

Each course is taught by one faculty member

A faculty member may teach between 0 and 4 courses per
semester



Modeling the Example Relationship



UML Aggregation and Composition
Example

Aggregation is denoted by a open diamond attached to the
aggregating class

Composition is denoted by a filled diamond attached to the
aggregating class


