
Java Inheritance
CSC 243 - Java Programming



Inheritance

Inheritance in Java is when one class is based on another class

The base class is called the superclass

The class inheriting from the superclass is called the subclass

The subclass inherits all accessible attributes and methods
from the superclass and may add new attributes and methods



Inheritance Diagram



Java Protected Accessibility

A private attribute or method can not be directly accessed by
a subclass

A protected attribute or method can be accessed by any
subclass or any class in the same package



Java Inheritance Syntax

In Java, modeling the class inheritance relationship is done by
using the extends keyword

public class Subclass extends Superclass



The this and super keywords

The this keyword is a reference to the calling object

The super keyword refers to the superclass

The super keyword can be used in two ways
To call a superclass constructor

To call a superclass method



Overloading and Overriding Methods
Overloading is ability to define multiple methods with the same
name but different signatures

Overriding is the ability to provide a different implementation
of a method in a subclass

An overridden method has the same name and signature as the
method in the superclass

Java provides an annotation for overriding methods

public class C2 extends C1 {
@Override
public String toString() {

return super.toString() + "C2";
}

}



Preventing Extending and Overriding

The final keyword can prevent a class from being extended

public final class C

The final keyword can also prevent a method from being
overridden

public class C {
public final method m() {}

}



Subtype Polymorphism

In Java, a class defines a type

A type defined by a subclass is called a subtype

A type defined by a superclass is called a supertype

Subtype polymorphism allows a variable of a supertype to refer
to a subtype object



Declared and Actual Types

The declared type of a variable is type that declares a variable

The actual type of a variable is the is the type that it is
constructed as

When a method is invoked by an object, the actual type is used
to determine the appropriate method to call

Example

// the declared type for o is Object
// the actual type of o is String
Object o = new String("Hi");
System.out.println(o.toString());



Object Casting

Implicit casting occurs when an object’s declared type is a
superclass of the actual type

// the String object is implicitly
// casted to type Object
Object o = new String("Hi");

Explicit casting must be performed to convert a superclass to a
subclass

// the Object o must be converted
// to a String type
String s = (String)o;



The instanceof operator

When casting objects to a subclass, if the subclass object is not
an instance of the superclass object a ClassCastException is
thrown

The instanceof operator returns the actual type of the
variable

if (o instanceof String) {
String s = (String)o;

}


