
Java Exceptions
CSC 243 - Java Programming



Basic Exception Handling

A try - catch block is used to handle exceptions from
methods that throw exceptions

try {
/* code that may throw an exception */

}
// type is the exception type and
// ex is a variable name
catch (type ex) {

/* code to process the exception */
}



Exception Types
Exceptions are objects and all exceptions have a root class of
java.lang.Throwable

The main types of exceptions are:
Error class: thrown by the JVM and represent internal system
errors

Exception class: describe errors caused by programs and
external circumstances

RuntimeException class: A subclass of Exception, which
describe programming errors

Error, RuntimeException, and their subclasses are unchecked
exceptions

All other exceptions are checked exceptions, meaning that the
compiler forces the programmer to check



Declaring Exceptions

To declare an exception in a method, the throws keyword is
used

public void myMethod() throws IOException

A method may declare more than one exception, which are
separated by commas

public void myMethod()
throws Exception1, Exception2, Exception3



Throwing Exceptions

Throwing an exception is the terminology used when a program
creates an instance of an exception type and throws it

To throw an exception, the throw keyword is used

Exception ex =
new Exception("Something broke");

throw ex;



Catching Exceptions

The code that processes an exception is called an exception
handler

An exception handler is found by propagating the exception
backward through the chain of method calls

try {
/* statements */

}
catch (Exception1 ex1) {

/* handler for exception 1 */
}
catch (Exception1 ex2) {

/* handler for exception 2 */
}



Getting Information From Exceptions

The java.lang.Throwable class has the following methods:
getMessage: returns a message String describing the exception

toString: returns a String of the form "ExceptionName:
getMessage()"

printStackTrace: prints the Throwable object and the call
stack to the console

getStackTrace: returns an array of stack trace elements



The finally clause

A finally clause is always executed whether an exception
occurred or not

try {
/* statements */

}
catch (Exception ex) {

/* exception handler*/
}
finally {

/* final statements */
}



Rethrowing Exceptions

An exception handler can rethrow an exception

try {
/* statements */

}
catch (Exception ex) {

/* some exception handler code */
throw ex;

}



Chained Exceptions

A chained exception is an exception that is rethrown with
additional information and the original exception

try {
/* statements */

}
catch (Exception ex) {

throw new Exception("Info", ex);
}



Defining Custom Exceptions

Custom exception classes can be defined by extending the
java.lang.Exception class

public class MyException extends Exception

Note that custom exceptions that are subclasses of Exception
are checked exceptions


