Java Exceptions

CSC 243 - Java Programming



Basic Exception Handling

m A try - catch block is used to handle exceptions from
methods that throw exceptions

try {
/* code that may throw an exception */
}
// type is the exception type and
// ex is a variable name
catch (type ex) {
/* code to process the exception */

¥



Exception Types

m Exceptions are objects and all exceptions have a root class of
java.lang. Throwable

m The main types of exceptions are:

m Error class: thrown by the JVM and represent internal system
errors

m Exception class: describe errors caused by programs and
external circumstances

m RuntimeException class: A subclass of Exception, which
describe programming errors

m Error, RuntimeException, and their subclasses are unchecked
exceptions

m All other exceptions are checked exceptions, meaning that the
compiler forces the programmer to check



Declaring Exceptions

m To declare an exception in a method, the throws keyword is
used

public void myMethod() throws IOException

m A method may declare more than one exception, which are
separated by commas

public void myMethod()
throws Exceptionl, Exception2, Exception3



Throwing Exceptions

m Throwing an exception is the terminology used when a program
creates an instance of an exception type and throws it

m To throw an exception, the throw keyword is used

Exception ex =
new Exception("Something broke");

throw ex;



Catching Exceptions

m The code that processes an exception is called an exception
handler

m An exception handler is found by propagating the exception
backward through the chain of method calls

try {

/* statements */
}
catch (Exceptionl exl) {

/* handler for exception 1 */
+
catch (Exceptionl ex2) {

/* handler for exception 2 */
}



Getting Information From Exceptions

m The java.lang.Throwable class has the following methods:
m getMessage: returns a message String describing the exception

m toString: returns a String of the form "ExceptionName:
getMessage()"

m printStackTrace: prints the Throwable object and the call
stack to the console

m getStackTrace: returns an array of stack trace elements



The finally clause

m A finally clause is always executed whether an exception
occurred or not

try {
/* statements */
}
catch (Exception ex) {
/* exzception handler*/
}
finally {
/* final statements */

}



Rethrowing Exceptions

m An exception handler can rethrow an exception

try {
/* statements */

}

catch (Exception ex) {
/* some exception handler code */
throw ex;



Chained Exceptions

m A chained exception is an exception that is rethrown with
additional information and the original exception

try {
/* statements */
}
catch (Exception ex) {
throw new Exception("Info", ex);

}



Defining Custom Exceptions

m Custom exception classes can be defined by extending the
java.lang.Exception class

public class MyException extends Exception

m Note that custom exceptions that are subclasses of Exception
are checked exceptions



