Uncertainty

CSC 548, Artificial Intelligence II

Uncertainty

- General situation:
- Observed variables (evidence): agent knows certain things about the state of the world
- Unobserved variables: agent needs to reason about other aspects
- Model: agent knows something about how the known variables relate to the unknown variables
- Probabilistic reasoning gives us a framework for managing our beliefs and knowledge

Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
- $R=$ is it raining?

■ $T=$ is it hot or cold?
■ $D=$ How long will it take to drive to work?
■ We denote random variables with capital letters

- Random variables have domains
- $R \in\{$ true, false $\}$
- $T \in\{$ hot, cold $\}$
- $D \in[0, \infty)$

Probability Distributions

- Associate a probability with each value

■ Example: temperature $P(T)$

T	P
hot	0.5
cold	0.5

- Example: weather $P(W)$

W	P
sun	0.6
rain	0.1
fog	0.3

Probability Distributions

■ Unobserved random variables have distributions

- A distribution is a table of probabilities of values
- A probability is a single number
$P(W=$ rain $=0.1$
- Must have:

$$
\forall x P(X=x) \geq 0 \text { and } \sum_{x} P(X=x)=1
$$

Joint Distributions

- A joint distribution over a set of random variables $X_{1}, X_{2}, \ldots, X_{n}$ specifies a real number for each assignment (or outcome):
$P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right)$
$P\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- Must obey

$$
\begin{gathered}
P\left(x_{1}, x_{2}, \ldots, x_{n}\right) \geq 0 \\
\sum_{\left(x_{1}, x_{2}, \ldots, x_{n}\right)} P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=1
\end{gathered}
$$

- Size of distribution of n variables with domain sizes d ?
- Only practical to write out small distributions

Joint Distribution

- Example:

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Probabilistic Models

- A probabilistic model is a joint distribution over a set of random variables
- Probabilistic models:
- (Random) variables with domains
- Assignments are called outcomes
- Joint distributions: say whether assignments (outcomes) are likely
- Normalized: sum to 1.0
- Ideally only certain variables directly interact
- Constraint satisfaction problems:
- Variables with domains
- Constraints: state whether assignments are possible
- Ideally only certain variables directly interact

Events

- An event is a set E of outcomes

$$
P(E)=\sum_{\left(x_{1}, \ldots, x_{n}\right) \in E} P\left(x_{1}, \ldots, x_{n}\right)
$$

- From a joint distribution we can calculate the probability of any event
- Typically, the events we care about are partial assignments, for example $P(T=$ hot $)$

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): combine collapsed rows by adding
- Example:
- $P(t)=\sum_{s} P(t, s) \rightarrow P(T=$ hot $)=0.5, P(T=$ cold $)=0.5$
- $P(w)=\sum_{s} P(t, s) \rightarrow P(S=$ sun $)=0.6, P(S=$ rain $)=0.4$
- $P\left(X_{1}=x_{1}\right)=\sum_{x_{2}} P\left(X_{1}=x_{1}, X_{2}=x_{2}\right)$

Conditional Probabilities

- A simple relation between joint and conditional probabilities
- Definition:

$$
P(a \mid b)=\frac{P(a, b)}{P(b)}
$$

- Example:

$$
P(W=s \mid T=c)=\frac{P(W=s, T=c)}{P(T=c)}=\frac{0.2}{0.5}=0.4
$$

Normalization

- Select the joint probabilities matching the evidence
- Normalize the selection
- Example:

$$
\begin{aligned}
P(W=s \mid T=c) & =\frac{P(W=s, T=c)}{P(T=c)} \\
& =\frac{P(W=s, T=c)}{P(W=s, T=c)+P(W=r, T=c)} \\
& =\frac{0.2}{0.2+0.3}=0.4
\end{aligned}
$$

Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (for example, from joint)
- We generally compute conditional probabilities
- These represent the agent's beliefs given the evidence
- Probabilities change with new evidence
- Observing new evidence causes beliefs to be updated

Inference by Enumeration

- General case:

■ Evidence variables: $E_{1}, \ldots, E_{k}=e_{1}, \ldots, e_{k}$

- Query variable: Q
- Hidden variables: H_{1}, \ldots, H_{r}

■ We want: $P\left(Q \mid e_{1}, \ldots, e_{k}\right)$

- Steps:

1 Select the entries consistent with the evidence
2 Sum out H to get joint of Query and evidence
3 Normalize

Product Rule

- Sometimes we have conditional distributions but want the joint

$$
P(y) P(x \mid y)=P(x, y) \Leftrightarrow P(x \mid y)=\frac{P(x, y)}{P(y)}
$$

The Chain Rule

- More generally, we can always write any joint distribution as an incremental product of conditional distributions

$$
P\left(x_{1}, x_{2}, x_{3}\right)=P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}, x_{2}\right)
$$

- General form:

$$
P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{i} P\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)
$$

Bayes' Rule

- Two ways to factor a joint distribution over two variables:

$$
P(x, y)=P(x \mid y) P(y)=P(y \mid x) P(x)
$$

- Dividing, we get

$$
P(x \mid y)=\frac{P(y \mid x)}{P(y)} P(x)
$$

- Why is this useful?
- We can build one conditional from its reverse
- Often one conditional is tricky but the other one is simple
- Foundation of many systems

Inference with Bayes' Rule

- Example: diagnostic probability from causal probability

$$
P(\text { cause } \mid \text { effect })=\frac{P(\text { effect } \mid \text { cause }) P(\text { cause })}{P(\text { effect })}
$$

Independence

- Two variables are independent, denoted $X \Perp Y$, in a joint distribution if:

$$
\begin{gathered}
P(X, Y)=P(X) P(Y) \\
\forall x, y P(x, y)=P(x) P(y)
\end{gathered}
$$

- Says the joint distribution factors into a product of two simple ones
- Usually variables are not independent
- Can use independence as a modeling assumption
- Independence can be a simplifying assumption
- Empirical joint distributions: at best "close" to independent

Conditional Independence

■ Example: P (Toothache, Cavity, Catch)

- If I have a cavity, the probability that the probe catches in it does not depend on whether I have a toothache.
- $P(+$ catch $\mid+$ toothache,+ cavity $)=P(+$ catch $\mid+$ cavity $)$
- The same independence holds if I do not have a cavity:
- $P(+$ catch $\mid+$ toothache,- cavity $)=P(+$ catch $\mid-$ cavity $)$
- Catch is conditionally independent of Toothache given Cavity:
- $P($ Catch \mid Toothache, Cavity $)=P($ Catch \mid Cavity $)$

Conditional Independence

- Unconditional (absolute) independence is rare
- Conditional independence is our most basic robust form of knowledge about uncertain environments.

■ $X \Perp Y \mid Z: X$ is conditionally independent of Y given Z

- If and only if:

$$
\forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z)
$$

- or, equivalently, if and only if:

$$
\forall x, y, z: P(x \mid z, y)=P(x \mid z)
$$

Reasoning over Time or Space

- Often, we want to reason about a sequence of observations
- Speech recognition
- Robot localization
- Medical monitoring

■ Need to introduce time (or space) into our models

Markov Models

- Value of X at a given time is called the state
- TODO figure

■ Parameters: called transition probabilities or dynamics, specify how the state evolves over time (also, initial state probabilities)

- Stationary assumption: transition probabilities the same at all times
- Same as MDP transition model, but no choice of action

Joint Distribution of a Markov Model

- TODO figure
- Joint distribution:

$$
P\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{2}\right) P\left(X_{4} \mid X_{3}\right)
$$

■ More generally:

$$
\begin{aligned}
P\left(X_{1}, X_{2}, \ldots, X_{n}\right) & =P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{2}\right) \ldots P\left(X_{T} \mid X_{T-1}\right) \\
& =P\left(X_{1}\right) \prod_{t=2}^{T}\left(P\left(X_{t} \mid X_{t-1}\right)\right.
\end{aligned}
$$

- Questions to be resolved:
- Does this indeed define a joint distribution?
- Can every joint distribution be factored this way, or are we making some assumptions about the joint distribution by using this factorization?

Chain Rule and Markov Models

- From the chain rule, every joint distribution over $X_{1}, X_{2}, X_{3}, X_{4}$ can be written as:
$P\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) P\left(X_{4} \mid\right.$ X_{1}, X_{2}, X_{3})
- Assuming that $X_{3} \Perp X_{1} \mid X_{2}$ and $X_{4} \Perp X_{1}, X_{2} \mid X_{3}$ results in the expression from the previous slide:
$P\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{2}\right) P\left(X_{4} \mid X_{3}\right)$

Chain Rule and Markov Models

- From the chain rule, every joint distribution over $X_{1}, X_{2}, \ldots, X_{T}$ can be written as:

$$
P\left(X_{1}, X_{2}, \ldots, X_{T}\right)=P\left(X_{1}\right) \prod_{t=2}^{T} P\left(X_{t} \mid X_{1}, X_{2}, \ldots, X_{t-1}\right)
$$

- Assuming that for all t :

$$
X_{t} \Perp X_{1}, \ldots, X_{t-2} \mid X_{t-1}
$$

gives us the expression

$$
P\left(X_{1}, X_{2}, \ldots, X_{T}\right)=P\left(X_{1}\right) \prod_{t=2}^{T} P\left(X_{t} \mid X_{t-1}\right)
$$

Implied Conditional Independence

■ We assumed: $X_{3} \Perp X_{1} \mid X_{2}$ and $X_{4} \Perp X_{1}, X_{2} \mid X_{3}$
■ Do we also have $X_{1} \Perp X_{3}, X_{4} \mid X_{2}$?

- Yes, proof:

$$
\begin{aligned}
P\left(X_{1} \mid X_{2}, X_{3}, X_{4}\right) & =\frac{P\left(X_{1}, X_{2}, X_{3}, X_{4}\right)}{P\left(X_{2}, X_{3}, X_{4}\right)} \\
& =\frac{P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{2}\right) P\left(X_{4} \mid X_{3}\right)}{\sum_{x_{1}} P\left(x_{1}\right) P\left(X_{2} \mid x_{1}\right) P\left(X_{3} \mid X_{2}\right) P\left(X_{4} \mid X_{3}\right)} \\
& =\frac{P\left(X_{1}, X_{2}\right)}{P\left(X_{2}\right)} \\
& =P\left(X_{1} \mid X_{2}\right)
\end{aligned}
$$

Markov Models Recap

■ Explicit assumption for all $t, X_{t} \Perp X_{1}, \ldots, X_{t-2} \mid X_{t-1}$

- Consequence: the joint distribution can be written as:

$$
P\left(X_{1}, X_{2}, \ldots, X_{T}\right)=P\left(X_{1}\right) \prod_{t=2}^{T} P\left(X_{t} \mid X_{t-1}\right)
$$

- Implied conditional independences: past variables independent of future variables given the present
- Additional explicit assumption: $P\left(X_{t} \mid X_{t-1}\right)$ is the same for all t

Stationary Distributions

- For most chains:
- Influence of the initial distribution gets less and less over time
- The distribution we end up in is independent of the initial distribution
- Stationary Distribution:
- The distribution we end up with is called the stationary distribution P_{∞} of the chain
- It satisfies

$$
P_{\infty}(X)=P_{\infty+1}(X)=\sum_{x} P(X \mid x) P_{\infty}(x)
$$

Hidden Markov Models

- Markov chains not so useful for most agents
- Need observations to update your beliefs

■ Hidden Markov Models (HMMs)

- Underlying Markov chain over states X
- Agent observes outputs (effects) at each time step
- A HMM is defined by:
- Initial distribution: $P\left(X_{1}\right)$
- Transitions: $P\left(X_{t} \mid X_{t-1}\right)$
- Emissions: $P\left(E_{t} \mid X_{t}\right)$

Joint Distribution of an HMM

- TODO figure
- Joint distribution:
$P\left(X_{1}, E_{1}, X_{2}, E_{2}, X_{3}, E_{3}\right)=P\left(X_{1}\right) P\left(E_{1} \mid X_{1}\right) P\left(E_{2} \mid X_{2}\right) P\left(X_{3} \mid\right.$ $\left.X_{2}\right) P\left(E_{3} \mid X_{3}\right)$
- More generally, $\$ P\left(X_{1}, E_{1}, X_{2}, E_{2}, X_{3}, E_{3}\right)=P\left(X_{1}\right) P\left(E_{1} \mid\right.$ $\left.X_{1}\right) \prod_{t=2}^{T} P\left(X_{t} \mid X_{t-1}\right) P\left(E_{t} \mid X_{t}\right)$
- Questions to be resolved:
- Does this indeed define a joint distribution?
- Can every joint distribution be factored this way, or are we making some assumptions about the joint distribution by using this factorization?

Chain Rule and HMMs

- From the chain rule, every joint distribution over $X_{1}, E_{1}, \ldots, X_{T}, E_{T}$ can be written as:
$P\left(X_{1}, E_{1}, \ldots, X_{T}, E_{T}\right)=$
$P\left(X_{1}\right) P\left(E_{1} \mid X_{1}\right)$
$\prod_{t=1}^{T} P\left(X_{t} \mid X_{1}, E_{1}, \ldots, X_{t-1}, E_{t-1}\right) P\left(E_{t} \mid X_{1}, E_{1}, \ldots, X_{x-1}, E_{t-1}, X_{t}\right)$

Chain Rule and HMMs

- Assuming that for all t :
- State independent of all past states and all past evidence given the previous state

$$
X_{t} \Perp X_{1}, E_{1}, \ldots, X_{t-2}, E_{t-2}, E_{t-1} \mid X_{t-1}
$$

- Evidence is independent of all past states and all past evidence given the current state

$$
E_{t} \Perp X_{1}, E_{1}, \ldots, X_{t-2}, E_{t-2}, X_{t-1}, E_{t-1} \mid X_{t}
$$

we get the expression

$$
P\left(X_{1}, E_{1}, X_{2}, E_{2}, X_{3}, E_{3}\right)=P\left(X_{1}\right) P\left(E_{1} \mid X_{1}\right) \prod_{t=2}^{T} P\left(X_{t} \mid X_{t-1}\right) P\left(E_{t} \mid\right.
$$

Implied Conditional Independence

- Many implied conditional independences, for example

$$
E_{1} \Perp X_{2}, E_{2}, X_{3}, E_{3} \mid X_{1}
$$

- To prove them:
- Approach 1: follow similar (algebraic) approach to what we did for Markov models
- Approach 2: directly from the graph structure

Real HMM Examples

- Speech recognition HMMs:
- Observations are acoustic signals (continuous valued)
- States are specific positions in specific words
- Machine translation HMMs:
- Observations are words (tens of thousands)
- States are translation options

■ Robot tracking:

- Observations are range readings (continuous)
- States are positions on a map (continuous)

Filtering / Monitoring

- Filtering, or monitoring, is the task of tracking the distribution $B_{t}(X)=P_{t}\left(X_{t} \mid e_{1}, \ldots, e_{t}\right)$ the belief state over time
- We start with $B_{1}(X)$ in an initial setting, usually uniform
- As time passes, or we get observations, we update $B(X)$
- The Kalman filter was invented in the 1960s and first implemented as a method of trajectory estimation for the Apollo program

Passage of Time

- Assume we have current belief $P(X \mid$ evidence to date $)$
- The after one time step passes:

$$
\begin{aligned}
P\left(X_{t+1} \mid e_{1: t}\right) & =\sum_{x_{t}} P\left(X_{t+1}, x_{t} \mid e_{1: t}\right) \\
& =\sum_{x_{t}} P\left(X_{t+1} \mid x_{t} e_{1: t}\right) P\left(x_{t} \mid e_{1: t}\right) \\
& =\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t}\right)
\end{aligned}
$$

or compactly:

$$
B^{\prime}\left(X_{t+1}=\sum_{x_{t}} P\left(X^{\prime} \mid x_{t}\right) B\left(x_{t}\right)\right.
$$

■ Basic idea: beliefs get "pushed" through the transitions

Observation

- Assume we have current belief $P(X \mid$ previous evidence $)$
- Then after evidence comes in:

$$
\begin{aligned}
P\left(X_{t+1} \mid e_{1: t+1}\right) & =\frac{P\left(X_{t+1}, e_{t+1} \mid e_{1: t}\right)}{P\left(e_{t+1} \mid e_{1: t}\right.} \\
& \propto x_{t+1} P\left(X_{t+1}, e_{t+1} \mid e_{1: t}\right) \\
& =P\left(e_{t+1} \mid e_{1: t}, X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right) \\
& =P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right)
\end{aligned}
$$

or compactly:

$$
B\left(X_{t+1}\right)_{\propto_{X_{t+1}}} P\left(e_{t+1} \mid X_{t+1}\right) B^{\prime}\left(X_{t+1}\right)
$$

■ Basic idea: beliefs get "reweighted" by likelihood of evidence

The Forward Algorithm

- We are given evidence at each time step and want to know

$$
B_{t}(X)=P\left(X_{t} \mid e_{1: t}\right)
$$

■ We can derive the following updates

$$
\begin{aligned}
P\left(x_{t} \mid e_{1: t}\right) & \propto x P\left(x_{t}, e_{1: t}\right) \\
& =\sum_{x_{t-1}} P\left(x_{t-1}, x_{t}, e_{1: t}\right) \\
& =\sum_{x_{t-1}} P\left(x_{t-1}, e_{1: t-1}\right) P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right) \\
& =P\left(e_{t} \mid x_{t}\right) \sum_{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) P\left(x_{t-1}, e_{1: t-1}\right)
\end{aligned}
$$

Online Belief Updates

- Every time step, we start with current $P(X \mid$ evidence $)$
- We update for time:

$$
P\left(x_{t} \mid e_{1: t-1}\right)=\sum_{x_{t-1}} P\left(x_{t-1} \mid e_{e_{1: t-1}}\right) P\left(x_{t} \mid x_{t-1}\right)
$$

- We update for evidence:

$$
P\left(x_{t} \mid e_{1: t}\right) \propto \propto_{X} P\left(x_{t} \mid e_{1: t-1}\right) P\left(e_{t} \mid x_{t}\right)
$$

- The forward algorithm does both at once (and does not normalize)

Particle Filtering

- Filtering: approximate solution

■ Sometimes $|X|$ is too big to use exact inference

- $|X|$ may be too big to even store $B(X)$
- For example, X is continuous
- Solution: approximate inference
- Track samples of X, not all values
- Samples are called particles
- Time per step is linear in the number of samples
- But, the number needed may be large
- In memory: list of particles, not states
- Particle is just a new name for sample

Representation: Particles

- Our representation of $P(X)$ is now a list of N particles (samples)
- Generally, $N \ll|N|$
- Storing a map from X to counts would defeat the point
- $P(X)$ approximated by number of particles with value x
- So, many x may have $P(x)=0$
- More particles, more accuracy
- For now, all particles have a weight of 1

Particle Filtering: Elapse Time

- Each particle is moved by sampling its next position from the transition model
$x^{\prime}=\operatorname{sample}\left(P\left(X^{\prime} \mid x\right)\right)$
- This is like prior sampling - samples' frequencies reflect the transition probabilities
- This captures the passage of time
- If enough samples, close to exact values before and after (consistent)

Particle Filtering: Observe

- Slightly trickier
- Do not sample observation, fix it
- Similar to likelihood weighting, downweight samples based on evidence
$w(x)=P(e \mid x)$
$B(X) \propto P(e \mid X) B^{\prime}(X)$
- As before, the probabilities do not sum to one, since all have been downweighted (in fact they now sum to (N times) an approximation of \$P(e))

Particle Filtering: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (that is, draw with replacement)
- This is equivalent to renormalizing the distribution

■ Now the update is complete for this time step, continue with the next one

Dynamic Bayes Nets (DBNs)

■ We want to track multiple variables over time, using multiple sources of evidence

- Idea: repeat a fixed Bayes net structure at each time
- Variables from time t can condition on those from $t-1$
- Dynamic Bayes nets are a generalization of HMMs

DBN Particle Filters

- A particle is a complete sample for a time step
- Initialize: generate prior samples for the $t=1$ Bayes net
- Example particle: $G_{1}^{a}=(3,3) G_{1}^{b}=(5,3)$
- Elapse time: sample a successor for each particle
- Example successor: $G_{2}^{a}=(2,3) G_{2}^{b}=(6,3)$
- Observe: weight each entire sample by the likelihood of the evidence conditioned on the sample
- Likelihood: $P\left(E_{1}^{a} \mid G_{1}^{a}\right) P\left(E_{1}^{b} \mid G_{1}^{b}\right)$
- Resample: select prior samples (tuples of values) in proportion to their likelihood

