
Reinforcement Learning
CSC 548, Artificial Intelligence II



Reinforcement Learning

Basic idea:
Receive feedback in the form of rewards

The agent’s utility is defined by the reward function

The agent must learn to act so as to maximize expected rewards

All learning is based on observed samples of outcomes



Reinforcement Learning

Assume a Markov decision process (MDP)
A set of states s ∈ S
A set of actions (per state) A
A model T (s, a, s ′)
A reward function R(s, a, s ′)

Goal is to find a policy π(s)

The twist: we do not know T or R
That is, we do not know which states are good or what the
actions do
Need to actually try actions to learn



Model-Based Learning

Model-based idea:
Learn an approximate model based on experiences
Solve for values as if the learned model is correct

Step 1: Learn empirical MDP model
Count outcomes s ′ for each s and a
Normalize to give an estimate of T̂ (s, a, s ′)
Discover each R̂(s, a, s ′) when we experience (s, a, s ′)

Step 2: Solve the learned MDP
For example, use value iteration



Example: Expected Age
Goal compute the expected age of

With know P(A), E [A] =
∑

a P(a) · a

Without P(A), we collect samples [a1, a2, . . . , aN ]
Unknown P(A): “model based”

P̂(a) = num(a)
N

E [A] ≈
∑

a
P̂(a) · a

Unknown P(A): “model free”

E [A] ≈ 1
N
∑

i
ai



Passive Reinforcement Learning

Simplified task: policy evaluation
Input: a fixed policy π(s)
You do not know the transitions T (s, a, s ′)
You do not know the rewards R(s, a, s ′)
Goal: learn the state values

In this case:
Learner is “along for the ride”
No choice about what actions to take
Just execute the policy and learn from experience
This is NOT offline planning – you actually take actions in the
world



Direct Evaluation

Goal: compute values for each state under π

Idea: average together observed sample values
Act according to π
Every time you visit a state, write down what the sum of
discounted rewards turned out to be
Average those samples

This is called direct evaluation



Problems with Direct Evaluation

What is good about direct evaluation?
It is easy to understand
It does not require any knowledge of T or R
It eventually computes the correct average values using sample
transitions

What is bad about it?
It wastes information about state connections
Each state must be learned separately
It takes a long time to learn



Why Not Use Policy Evaluation?
Simplified Bellman updates calculate V for a fixed policy:

Each iteration, replace V with a one-step lookahead layer over
V

V π
0 (s) = 0

V π
k+1(s)←

∑
s′

T (s, π(s), s ′) [R(s, π(s), s ′) + γV π
k (s ′)]

This approach fully exploits connections between states

Unfortunately, we need T and R to do it

Key question: how can we do this update to V without
knowing T and R?

That is, how do we take a weighted average without knowing
the weights



Sample-Based Policy Evaluation?
We want to improve our estimate of V by computing these
averages:

V π
k+1(s)←

∑
s′

T (s, π(s), s ′)
[
R(s, π(s), s ′) + γV π

k (s ′)
]

Idea: take samples of outcomes s ′ (by performing the action)
and average

sample1 = R(s, π(s), s ′
1) + γV π

k (s ′
1)

sample2 = R(s, π(s), s ′
2) + γV π

k (s ′
2)

· · ·
samplen = R(s, π(s), s ′

n) + γV π
k (s ′

n)

V π
k+1(s)← 1

n
∑

i
samplei



Temporal Difference Learning

Big idea: learn from every experience
Update V (s) each time we experience a transition (s, a, s ′, r)
Likely outcomes s ′ will contribute updates more often

Temporal difference learning of values
Policy is fixed, still doing evaluation
Move values toward value of whatever successor occurs: running
average

sample = R(s, π(s), s ′) + γV π(s ′)
V π ← (1− α)V π(s) + (α) sample

= V π(s) + α(sampe − V π(s))



Exponential Moving Average

Exponential moving average
The running interpolation update: x̄n = (1− α) · x̄n−1 + α · xn
Makes recent samples more important

x̄n = xn + (1− α) · xn−1 + (1− α)2 · xn−2 + . . .

1 + (1− α) + (1− α)2) + . . .

Forgets about the past (distant past values were wrong anyway)
Decreasing the learning rate (alpha) can give converging
averages



Problems with TD Value Learning

TD value learning is a model-free way to do policy evaluation,
mimicking Bellman updates with running sample averages

Problem: what if we want to turn values into a (new) policy?

π(s) = arg max
a

Q(s, a)

Q(s, a) =
∑
s′

T (s, a, s ′)
[
R(s, a, s ′) + γV (s ′)

]

Idea: learn Q-values, not values

Makes action selection model-free too



Active Reinforcement Learning

Full reinforcement learning: optimal policies (like value
iteration)

You do not know the transitions T (s, a, s ′)
You do not know the rewards R(s, a, s ′)
You choose the actions
Goal: learn the optimal policy / values

In this case:
Learner make choices
Fundamental tradeoff: exploration versus exploitation
This is NOT offline planning – you take actions in the world
and find out what happens



Q-Value Iteration

Value iteration: find successive (depth-limited) values
Start with V0(s) = 0 which we know is right
Given Vk calculate the depth k + 1 values for all states

Vk+1(s)← max
a

∑
s′

T (s, a, s ′) [R(s, a, s ′) + γVk(s ′)]

But, Q-values are more useful, so compute them instead
Start with Q0(s, a) = 0, which we know is right
Given Qk calculate the depth k + 1 q-values for all q-states

Qk+1(s, a)←
∑

s′

T (s, a, s ′)
[
R(s, a, s ′) + γmax

a′
Qk(s ′, a′)

]



Q-Learning

Q-learning: sample-based Q-value iteration

Qk+1(s, a)←
∑
s′

T (s, a, s ′)
[
R(s, a, s ′) + γmax

a′
Qk(s ′, a′)

]

Learn Q(s, a) values as you go
Receive a sample (s, a, s ′, r)
Consider your old estimate: Q(s, a)
Consider you new sample estimate:

sample = R(s, a, s ′) + γmax
a′

Q(s ′, a′)

Incorporate the new estimate into the running average:

Q(s, a)← (1− α)Q(s, a) + (α) [sample]



Q-Learning Properties

Amazing result: Q-learning converges to optimal policy – even
if you are acting suboptimally

This is called off-policy learning

Caveats:
You need to explore enough
You have to eventually make the learning rate small enough
But, not decrease it too quickly
Basically, in the limit, it does not matter how you select actions



How to Explore?

Several schemes for forcing exploration
Simplest: random actions (ε-greedy)

Every time step, flip a coin
With (small) probability ε, act randomly
With (large) probability 1− ε, act on current policy

Problems with random actions
You do eventually explore the space, but keep thrashing around
once learning is done
One solution: lower ε over time
Another solution: exploration functions



Exploration Functions

When to explore?
Random actions: explore a fixed amount
Better idea: explore areas whose badness is not (yet)
established, eventually stop exploring

Exploration function
Takes a value estimate u and a visit count n and returns an
optimistic utility, for example, f (u, n) = u + k

n
Regular Q-update:

Q(s, a)←α R(s, a, s ′) + γmax
a′

Q(s ′, a′)

Modified Q-update:

Q(s, a)←α R(s, a, s ′) + γmax
a′

f
(
Q(s ′, a′),N(s ′, a′)

)
Note: this propagates the “bonus” back to states that lead to
unknown states as well



Regret

Even if you learn the optimal policy, you still make mistakes
along the way

Regret is a measure of your total mistake cost: the difference
between your (expected) rewards, including youthful
suboptimality, and optimal (expected) rewards

Minimizing regret goes beyond learning to be optimal – it
requires optimally learning to be optimal

Example: random exploration and exploration functions both
end up optimal, but random exploration has higher regret



Generalizing Across States

Basic Q-learning keeps a table of all q-values

In realistic situations, we cannot possibly learn about every
single state

Too many states to visit them all in training
Too many states to hold the q-tables in memory

Instead, we want to generalize:
Learn about some small number of training states from
experience
Generalize the experience to new, similar situations
This is a fundamental idea in machine learning, and we will see
it over and over again



Feature-Based Representations

Idea: describe a state using a vector of features (properties)
Features are functions from states to real numbers that capture
important properties of the state

We can also describe a q-state (s, a) with features



Linear Value Functions

Using a feature representation, we can write a q function (or
value function) for any state using a few weights:

V (s) = w1f1(s) + w2f2(s) + . . .+ wnfn(s)Q(s, a) = w1f1(s, a) + w2f2(s, a) + . . .+ wnfn(s, a)

Advantage: our experience is summed up in a few powerful
numbers

Disadvantage: states may share features but actually be very
different in value



Approximate Q-Learning

Q-learning with linear Q-functions:
transition = (s, a, s ′, r)
difference = [r + γmaxa′ Q(s ′, a′)]− Q(s, a)
update

Q(s, a)← Q(s, a) + α [difference]
wi leftarrowwi + α [difference] fi (s, a)

Intuitive interpretation:
Adjust weights of active features
For example, if something unexpectedly bad happens, blame the
features that were on – disprefer all states with that state’s
features

Formal justification: online least squares



Policy Search

Problem: often the feature-based policies that work well (win
games / maximize utilities) are not the ones that approximate
V / Q best

Q-learning’s priority: get Q-values close (modeling)
Action selection priority: get ordering of Q-values correct
(prediction)
We will see this distinction between modeling and prediction
again later in the course

Solution: learn policies that maximize rewards, not the values
that predict them

Policy search: start with an decent solution then fine-tune it by
hill climbing on feature weights



Policy Search

Simplest policy search:
Start with an initial linear value function of Q-function
Nudge each feature weight up and down and see if your policy
is better than before

Problems:
How do we tell the policy got better?
Need to run many sample episodes
With a lot of features, this can be impractical

Better methods exploit lookahead structure, sample wisely,
change multiple parameters . . .


