Rational Decisions

CSC 548, Artificial Intelligence II

Preferences

- An agent chooses among prizes $(A, B$, etc.) and lotteries (situations with uncertain prizes).
- Preference Notation:

$A \succ B$	A preferred to B
$A \backsim B$	indifference between A and B
$A \succsim B$	B not preferred to A

■ Lottery notation: $L=[p, A ;(1-p), B]$

Rational Preferences

- Idea: preferences of a rational agent must obey constraints
- Rational preferences \Rightarrow behavior describable as maximization of expected utility.
- Constraints:
- Orderability:

$$
(A \succ B) \vee(B \succ A) \vee(A \backsim B)
$$

- Transitivity:

$$
(A \succ B) \wedge(B \succ C) \rightarrow(A \succ C)
$$

- Continuity:

$$
A \succ B \succ C \rightarrow \exists p[p, A ; 1-p, C] \backsim B
$$

- Substitutability:

$$
A \backsim B \rightarrow[p, A ; 1-p, C] \backsim[p, B ; 1-p, C]
$$

- Monotonicity:

$$
A \succ B \rightarrow(p \geq q \leftrightarrow[p, A ; 1-p, B] \succsim[q, A ; 1-q, B])
$$

Rational Preferences

- Violating the constraints leads to self-evident irrationality
- For example: an agent with intransitive preferences can be induced to give away all its money
- If $B \succ C$, then an agent who has C would pay (say) 1 cent to get B
- If $A \succ B$, then an agent who has B would pay (say) 1 cent to get A
- If $C \succ A$, then an agent who has A would pay (say) 1 cent to get C

Maximizing Expected Utility

- Theorem (Ramsey, 1931; von Neumann and Morgenstern 1944): Given preferences satisfying the constraints there exists a real-valued function U such that

$$
\begin{aligned}
& U(A) \geq U(B) \leftrightarrow A \succsim B \\
& U\left(\left[p_{1}, S_{1} ; \ldots ; p_{n}, S_{n}\right]\right)=\sum_{i} p_{i} U\left(S_{i}\right)
\end{aligned}
$$

■ Maximum Expected Utility (MEU) principle: choose the action that maximizes expected utility

■ Note: an agent can be entirely rational (consistent with MEU) without ever representing of manipulating utilities and probabilities

Utilities

- Utilities map states to real numbers
- Standard approach to assessment of human utilities:
- compare a given state A to a standard lottery L_{p} that has "best possible prize" u_{\top} with probability p and "worst possible catastrophe" u_{\perp} with probability $(1-p)$
- adjust lottery probability p until $A \backsim L_{p}$

Utility Scales

■ Normalized utilities: $u_{\top}=1.0, u_{\perp}=0.0$

- Micromorts: one-millionth chance of death useful for Russian roulette, paying to reduce risks, etc.
- QALYs: quality-adjusted life years useful for medical decisions involving substantial risk

■ Note: behavior is invariant with respect to + ve linear transformation

$$
U^{\prime}(x)=k_{1} U(x)+k_{2} \quad \text { where } k_{1}>0
$$

- With deterministic prizes only (no lottery choices), only ordinal utility can be determined, that is, total order on prizes

Money

- Money does not behave as a utility function
- Given a lottery L with expected monetary value $E M V(L)$, usually $U(L)<U(E M V(L))$, that is, people are risk-averse

■ Utility curve: for what probability p am I indifferent between prize x and a lottery $[p, \$ M ;(1-p), \$ 0]$ for large M ?

■ Typical empirical data, extrapolated with risk-prone behavior:

Decision Networks

- Add action nodes and utility nodes to belief networks to enable rational decision making

- Algorithm:
- For each value of action node, compute expected value of utility node given action, evidence

Multiattribute Utility

- How can we handle utility functions of many variable $X_{1} \ldots X_{n}$?
- For example, what is U (Deaths, Noise, Cost)
- How can complex utility functions be assessed from preference behavior?
- Idea 1: identify conditions under which decisions can be made without complete identification of $U\left(x_{1}, \ldots, x_{n}\right)$
- Idea 2: identify various types of independence in preferences and derive consequent canonical forms for $U\left(x_{1}, \ldots, x_{n}\right)$

Strict Dominance

- Typically define attributes such that U is monotonic in each
- Strict dominance: choice B strictly dominates choice A iff $\forall i X_{i}(B) \geq X_{i}(A)$ (and hence $U(B) \geq U(A)$)

- Strict dominance seldom holds in practice

Stochastic Dominance

■ Distribution p_{1} stochastically dominates distribution p_{2} iff

$$
\forall t \int_{-\infty}^{t} p(x) d x \leq \int_{-\infty}^{t} p_{2}(x) d(x)
$$

- If U is monotonic in x, then A_{1} with outcome distribution p_{1} stochastically dominates A_{2} with outcome distribution p_{2} :

$$
\int_{-\infty}^{\infty} p_{1}(x) U(x) d(x) \geq \int_{-\infty}^{\infty} p_{2}(x) U(x) d x
$$

- Multiattribute case: stochastic dominance on all attributes \Rightarrow optimal

Stochastic Dominance

- Stochastic dominance can often be determined without exact distributions using qualitative reasoning
- For example, construction cost increases with distance from city: S_{1} is closer to the city than $S_{2} \rightarrow S_{1}$ stochastically dominates S_{2} on cost

■ For example, injury increases with collision speed

- Can annotate belief networks with stochastic dominance information: $X \xrightarrow{+} Y(X$ positively influences $Y)$ means that for every value z of Y 's other parents Z $\forall x_{1}, x_{2} \geq x_{2} \rightarrow P\left(Y \mid x_{1}, z\right)$ stochastically dominates $P\left(Y \mid x_{2}, z\right)$

Preference Structure: Deterministic

- X_{1} and X_{2} preferentially independent (P.I.) of X_{3} iff preference between $\left\langle x_{1}, x_{2}, x_{3}\right\rangle$ and $\left\langle x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right\rangle$ does not depend on x_{3}
- For example, \langle Noise, Cost, Safety〉:

〈 20,000 suffer, $\$ 4.6$ billion, 0.06 deaths $/ \mathrm{mpm}\rangle$ versus $\langle 70,000$ suffer, $\$ 4.2$ billion, 0.06 deaths $/ \mathrm{mpm}\rangle$

- Theorem (Leontief, 1947): if every pair of attributes is P.I. of its complement, then every subset of attributes is P.I. of its complement: mutual P.I.

■ Theorem (Debreu, 1960): mutual P.I. $\rightarrow \exists$ additive value function:

$$
V(S)=\sum_{i} V_{i}\left(X_{i}(S)\right)
$$

Hence assess n single-attribute functions; often a good approximation

Preference Structure: Stochastic

■ Need to consider preferences over lotteries: X is utility-independent of Y iff preferences over lotteries in X do not depend on y

■ Mutual P.I.: each subset is U.I. of its complement $\rightarrow \exists$ multiplicative utility function:

$$
\begin{aligned}
U & =k_{1} U_{1}+k_{2} U_{2}+k_{3} U_{3} \\
& +k_{1} k_{2} U_{1} U_{2}+k_{2} k_{3} U_{2} U_{3}+k_{3} k_{1} U_{3} U_{1} \\
& +k_{1} k_{2} k_{3} U_{1} U_{2} U_{3}
\end{aligned}
$$

- Routine procedures and software packages for generating preference tests to identify various canonical families of utility functions

Value of Information

- Idea: compute value of acquiring each possible piece of evidence; can be done directly from the decision network
- Example: buying oil drilling rights
- two blocks A and B, exactly one has oil, worth k
- prior probabilities 0.5 each, mutually exclusive
- current price of each block $k / 2$
- "consultant" offers accurate survey of A - fair price?
- Solution: compute the expected value of information expected value of the best action given the information minus expected value of best action without information
- Survey may say "oil in A " or "no oil in A "
$=[0.5 \times$ value of "buy A " given "oil in $A+$
$0.5 \times$ value of" ${ }^{\text {buy }} B^{\prime \prime}$ given "no oil in A "] - 0
$=(0.5 \times k / 2)+(0.5 \times k / 2)-0=k / 2$

General Formula

■ Current evidence E, current best action α, possible action outcomes S_{i}, potential new evidence E_{j}

$$
E U(\alpha \mid E)=\max _{a} \sum_{i} U\left(S_{i}\right) P\left(S_{i} \mid E, a\right)
$$

■ Suppose we knew $E_{j}=e_{j k}$, then we would choose $\alpha_{e_{j k}}$ s.t.

$$
E U\left(\alpha_{e_{j k}} \mid E, E_{j}=e_{j k}\right)=\max _{a} \sum_{i} U\left(S_{i}\right) P\left(S_{i} \mid E, a, E_{j}=e_{j k}\right)
$$

- E_{j} is a random variable whose value is currently unknown \Rightarrow must compute expected gain over all possible values:
$\operatorname{VPI}_{E}\left(E_{j}\right)=\left(\sum_{k} P\left(E_{j}=e_{j k} \mid E\right) E U\left(\alpha_{e_{j k}} \mid E, E_{j}=e_{j k}\right)\right)-E U(\alpha \mid E)$
$(\mathrm{VPI}=$ value of perfect information $)$

Properties of VPI

- Nonnegative (in expectation)
$\forall j, E \vee P I_{E}\left(E_{j}\right) \geq 0$
■ Nonadditive (consider obtaining E_{j} twice) $V I_{E}\left(E_{j}, E_{k}\right) \neq V I_{E}\left(E_{j}\right)+V P I_{E}\left(E_{k}\right)$
- Order-independent
$V P I_{E}\left(E_{j}, E_{k}\right)=V P I_{E}\left(E_{j}\right)+V P I_{E, E_{j}}\left(E_{k}\right)=$ $V P I_{E}\left(E_{k}\right)+V P I_{E, E_{k}}\left(E_{j}\right)$
- Note: when more than one piece of evidence can be gathered, maximizing VPI for each to select one is not always optimal \Rightarrow evidence-gathering becomes a sequential decision problem

Qualitative Behaviors

- a: choice is obvious, information worth little
- b: choice is nonobvious, information worth a lot
- c: choice is nonobvious, information worth little

Sequential Decision Problems

Example Markov Decision Process (MDP)

- States $s \in S$, actions $a \in A$
- Model: $T\left(s, a, s^{\prime}\right) \equiv P\left(s^{\prime} \mid s, a\right)=$ probability that a in s leads to s^{\prime}
- Reward function:

$$
R(a)= \begin{cases}-0.04 & \text { (small penalty) for nonterminal states } \\ \pm 1 & \text { for terminal states }\end{cases}
$$

Solving Markov Decision Processes

- In search problems, aim is to find an optimal sequence
- In MDPs, aim is to find optimal policy $\pi(s)$: best action for every possible state s (because we cannot predict where one will end up)
- The optimal policy maximizes (say) the expected sum of rewards
- Optimal policy when state penalty $R(s)$ is -0.04 :

Risk and Reward

Utility of State Sequences

- Need to understand preferences between sequences of states
- Typically consider stationary preferences on reward sequences:

$$
\left[r, r_{0}, r_{1}, r_{2}, \ldots\right] \succ\left[r, r_{0}^{\prime}, r_{1}^{\prime}, r_{2}^{\prime}, \ldots\right] \leftrightarrow\left[r_{0}, r_{1}, r_{2}, \ldots\right] \succ\left[r_{0}^{\prime}, r_{1}^{\prime}, r_{2}^{\prime}, \ldots\right]
$$

- Theorem: there are only two ways to combine rewards over time:

1 Additive utility function:

$$
U\left(\left[s_{0}, s_{1}, s_{2}, \ldots\right]\right)=R\left(s_{0}\right)+R\left(s_{1}\right)+R\left(s_{2}\right)+\ldots
$$

2 Discounted utility function:

$$
U\left(\left[s_{0}, s_{1}, s_{2}, \ldots\right]\right)=R\left(s_{0}\right)+\gamma R\left(s_{1}\right)+\gamma^{2} R\left(s_{2}\right)+\ldots
$$

where γ is the discount factor.

Utility of States

- Utility of a state (a.k.a. its value) is defined to be $U(s)=$ expected (discounted) sum of rewards (until termination) assuming optimal actions
- Given the utilities of the states, choosing the best action is just MEU: maximize the expected utility of the immediate successors

Utilities

- Problem: infinite lifetimes \Rightarrow additive utilities are infinite

1 Finite Horizon: termination at a fixed time $T \Rightarrow$ nonstationary policy: $\pi(s)$ depends on time left

2 Absorbing state(s): with probability 1, agent eventually "dies" for any $p i \Rightarrow$ expected utility of every state is finite

3 Discounting: assuming $\gamma<1, R(s) \leq R_{\text {max }}$,

$$
U\left(\left[s_{0}, \ldots, s_{\infty}\right]\right)=\sum_{t=0}^{\infty} \gamma^{t} R\left(s_{t}\right) \leq R_{\max } /(1-\gamma)
$$

smaller $\gamma \Rightarrow$ shorter horizon
4 Maximize system gain = average reward per time step:
Theorem: optimal policy has constant gain after intial transient

Dynamic Programming: the Bellman Equation

■ Definition of utility of states leads to a simple relationship among utilities of neighboring states: expected sum of rewards $=$ current reward $+\gamma \times$ expected sum of rewards after taking best action

- Bellman equation (1957):

$$
U(s)=R(s)+\gamma \max _{a} \sum_{s^{\prime}} U\left(s^{\prime}\right) T\left(s, a, s^{\prime}\right)
$$

- Example:

$$
\begin{aligned}
U(1,1) & =-0.04+\gamma \max (\\
& 0.8 U(1,2)+0.1 U(2,1)+0.1 U(1,1) \\
& 0.9 U(1,1)+0.1 U(1,2) \\
& 0.9 U(1,1)+0.1 U(2,1) \\
& 0.8 U(2,1)+0.1 U(1,2), 0.1 U(1,1)
\end{aligned}
$$

Value Iteration Algorithm

- Idea: start with arbitrary utility values

Update to make them locally consistent with Bellman equation Everywhere locally consistent \Rightarrow global optimality

- Repeat for every s simultaneously until "no change"

$$
U(s) \leftarrow R(s)+\gamma \max _{a} \sum_{s^{\prime}} U\left(s^{\prime}\right) T\left(s, a, s^{\prime}\right) \quad \forall s
$$

Convergence

■ Define the max-norm $\|U\|=\max _{s}|U(s)|$, so $\|U-V\|=$ maximum difference between U and V

■ Let U^{t} and U^{t+1} be successive approximations to the true utility

- Theorem: for any two approximations U^{t} and V^{t}

$$
\left\|U^{t+1}-V^{t+1}\right\| \leq\left\|U^{t}-V^{t}\right\|
$$

That is, any distinct approximations must get closer to each other so, inparticular, any approximation must get closer to the true U and value iteration converges to a unique, stable optimal solution

- Theorem: if $\left\|U^{t+1}-U^{t}\right\|<\epsilon$, then $\left\|U^{t+1}-U\right\|<\frac{2 \epsilon \gamma}{1-\gamma}$ That is, once the change in U^{t} becomes small, we are almost done
- MEU policy using U^{t} may be optimal long before convergence of values

Policy Iteration

- Howard, 1960: search for optimal policy and utility values simultaneously
- To compute utilities given a fixed π (value determination):

$$
U(s)=R(s)+\gamma \sum_{s^{\prime}} U\left(s^{\prime}\right) T\left(s, \pi(s), s^{\prime}\right) \quad \forall s
$$

That is, n simultaneous linear equations in n unknowns, solve in $\mathcal{O}\left(n^{3}\right)$

Modified Policy Iteration

■ Policy iteration often converges in few iterations, but each is expensive

■ Idea: use a few steps of value iteration (but with π fixed) starting from the value function produced the last time to produce an approximate value determination step

- Often converges much faster than pure value iteration or policy iteration

■ Leads to much more general algorithms where Bellman value updates and Howard policy updates can be performed locally in any order

- Reinforcement learning algorithms operate by performing such updates based on the observed transitions made in an initially unknown environment

Partial Observability

- A Partially Observable Markov Decision Process (POMP) has an observation model $O(s, e)$ defining the probability that the agent obtains evidence e when in state s
- Agent does not know which state it is in \Rightarrow makes no sense to talk about policy π
- Theorem (Astrom 1965): the optimal policy in a POMPD is a function $\pi(b)$ where b is the belief state (probability distribution over states)
- Can convert a POMPD into an MDP in belief-state space, where $T\left(b, a, b^{\prime}\right)$ is the probability that the new belief state is b^{\prime} given that the current belief state is b and the agent does a

Partial Observability

- Solutions automatically include information-gathering behavior

■ If there are n states, b is an n-dimensional real-valued vector \Rightarrow solving POMPDs is very (actually, PSPACE) hard

- The real world is a POMDP (with initially unknown T and O

