Rational Decisions

CSC 548, Artificial Intelligence II

Preferences

- An agent chooses among prizes (A, B, etc.) and lotteries (situations with uncertain prizes).
- Preference Notation:

$$A \succ B$$
 A preferred to B $A \backsim B$ indifference between A and B $A \succsim B$ B not preferred to A

■ Lottery notation: L = [p, A; (1 - p), B]

Rational Preferences

- Idea: preferences of a rational agent must obey constraints
- Rational preferences ⇒ behavior describable as maximization of expected utility.
- Constraints:
 - Orderability: $(A \succ B) \lor (B \succ A) \lor (A \backsim B)$
 - Transitivity: $(A \succ B) \land (B \succ C) \rightarrow (A \succ C)$
 - Continuity: $A \succ B \succ C \rightarrow \exists p[p, A; 1-p, C] \backsim B$
 - Substitutability: $A \backsim B \rightarrow [p, A; 1-p, C] \backsim [p, B; 1-p, C]$
 - Monotonicity: $A \succ B \rightarrow (p \ge q \leftrightarrow [p, A; 1-p, B] \succsim [q, A; 1-q, B])$

Rational Preferences

- Violating the constraints leads to self-evident irrationality
- For example: an agent with intransitive preferences can be induced to give away all its money
 - If $B \succ C$, then an agent who has C would pay (say) 1 cent to get B
 - If $A \succ B$, then an agent who has B would pay (say) 1 cent to get A
 - If $C \succ A$, then an agent who has A would pay (say) 1 cent to get C

Maximizing Expected Utility

■ Theorem (Ramsey, 1931; von Neumann and Morgenstern 1944): Given preferences satisfying the constraints there exists a real-valued function *U* such that

$$U(A) \geq U(B) \leftrightarrow A \succsim B$$

 $U([p_1, S_1; \dots; p_n, S_n]) = \sum_i p_i U(S_i)$

- Maximum Expected Utility (MEU) principle: choose the action that maximizes expected utility
- Note: an agent can be entirely rational (consistent with MEU) without ever representing of manipulating utilities and probabilities

Utilities

- Utilities map states to real numbers
- Standard approach to assessment of human utilities:
 - compare a given state A to a standard lottery L_p that has "best possible prize" u_{\perp} with probability p and "worst possible catastrophe" u_{\perp} with probability (1-p)
 - adjust lottery probability p until $A \backsim L_p$

Utility Scales

- Normalized utilities: $u_{\top} = 1.0, u_{\bot} = 0.0$
- Micromorts: one-millionth chance of death useful for Russian roulette, paying to reduce risks, etc.
- QALYs: quality-adjusted life years useful for medical decisions involving substantial risk
- Note: behavior is invariant with respect to +ve linear transformation

$$U'(x) = k_1 U(x) + k_2$$
 where $k_1 > 0$

■ With deterministic prizes only (no lottery choices), only ordinal utility can be determined, that is, total order on prizes

Money

- Money does **not** behave as a utility function
- Given a lottery L with expected monetary value EMV(L), usually U(L) < U(EMV(L)), that is, people are risk-averse
- Utility curve: for what probability p am I indifferent between prize x and a lottery [p, M; (1-p), 0] for large M?
- Typical empirical data, extrapolated with risk-prone behavior:

Decision Networks

 Add action nodes and utility nodes to belief networks to enable rational decision making

- Algorithm:
 - For each value of action node, compute expected value of utility node given action, evidence

Multiattribute Utility

- How can we handle utility functions of many variable $X_1 ... X_n$?
- For example, what is U(Deaths, Noise, Cost)
- How can complex utility functions be assessed from preference behavior?
- Idea 1: identify conditions under which decisions can be made without complete identification of $U(x_1,...,x_n)$
- Idea 2: identify various types of independence in preferences and derive consequent canonical forms for $U(x_1,...,x_n)$

Strict Dominance

- lacktriangle Typically define attributes such that U is monotonic in each
- Strict dominance: choice B strictly dominates choice A iff $\forall i \ X_i(B) \ge X_i(A)$ (and hence $U(B) \ge U(A)$)

■ Strict dominance seldom holds in practice

Stochastic Dominance

■ Distribution p_1 stochastically dominates distribution p_2 iff

$$\forall t \int_{-\infty}^{t} p(x) dx \leq \int_{-\infty}^{t} p_2(x) d(x)$$

■ If U is monotonic in x, then A_1 with outcome distribution p_1 stochastically dominates A_2 with outcome distribution p_2 :

$$\int_{-\infty}^{\infty} p_1(x)U(x)d(x) \ge \int_{-\infty}^{\infty} p_2(x)U(x)dx$$

■ Multiattribute case: stochastic dominance on all attributes ⇒ optimal

Stochastic Dominance

- Stochastic dominance can often be determined without exact distributions using qualitative reasoning
- For example, construction cost increases with distance from city: S_1 is closer to the city than $S_2 \rightarrow S_1$ stochastically dominates S_2 on cost
- For example, injury increases with collision speed
- Can annotate belief networks with stochastic dominance information: $X \stackrel{+}{\to} Y$ (X positively influences Y) means that for every value z of Y's other parents Z $\forall x_1, x_2 \geq x_2 \to P(Y \mid x_1, z)$ stochastically dominates $P(Y \mid x_2, z)$

Preference Structure: Deterministic

- X_1 and X_2 preferentially independent (P.I.) of X_3 iff preference between $\langle x_1, x_2, x_3 \rangle$ and $\langle x_1', x_2', x_3' \rangle$ does not depend on x_3
- For example, ⟨Noise, Cost, Safety⟩:
 ⟨ 20,000 suffer, \$4.6 billion, 0.06 deaths/mpm ⟩ versus
 ⟨ 70,000 suffer, \$4.2 billion, 0.06 deaths/mpm ⟩
- Theorem (Leontief, 1947): if every pair of attributes is P.I. of its complement, then every subset of attributes is P.I. of its complement: mutual P.I.
- Theorem (Debreu, 1960): mutual P.I. $\rightarrow \exists$ additive value function:

$$V(S) = \sum_{i} V_{i}(X_{i}(S))$$

Hence assess n single-attribute functions; often a good approximation

Preference Structure: Stochastic

- Need to consider preferences over lotteries: X is utility-independent of Y iff preferences over lotteries in X do not depend on y
- Mutual P.I.: each subset is U.I. of its complement → ∃ multiplicative utility function:

$$U = k_1 U_1 + k_2 U_2 + k_3 U_3$$

+ $k_1 k_2 U_1 U_2 + k_2 k_3 U_2 U_3 + k_3 k_1 U_3 U_1$
+ $k_1 k_2 k_3 U_1 U_2 U_3$

 Routine procedures and software packages for generating preference tests to identify various canonical families of utility functions

Value of Information

- Idea: compute value of acquiring each possible piece of evidence; can be done directly from the decision network
- Example: buying oil drilling rights
 - \blacksquare two blocks A and B, exactly one has oil, worth k
 - prior probabilities 0.5 each, mutually exclusive
 - \blacksquare current price of each block k/2
 - "consultant" offers accurate survey of A fair price?
- Solution: compute the expected value of information expected value of the best action given the information minus expected value of best action without information
- Survey may say "oil in A" or "no oil in A" $= [0.5 \times \text{ value of "buy } A\text{" given "oil in } A + 0.5 \times \text{ value of "buy } B\text{" given "no oil in } A\text{" }] 0$ $= (0.5 \times k/2) + (0.5 \times k/2) 0 = k/2$

General Formula

■ Current evidence E, current best action α , possible action outcomes S_i , potential new evidence E_i

$$EU(\alpha \mid E) = \max_{a} \sum_{i} U(S_i) P(S_i \mid E, a)$$

■ Suppose we knew $E_i = e_{ik}$, then we would choose $\alpha_{e_{ik}}$ s.t.

$$EU(\alpha_{e_{jk}} \mid E, E_j = e_{jk}) = \max_{a} \sum_{i} U(S_i) P(S_i \mid E, a, E_j = e_{jk})$$

■ E_j is a random variable whose value is *currently* unknown \Rightarrow must compute expected gain over all possible values:

$$VPI_E(E_j) = (\sum_{k} P(E_j = e_{jk} \mid E)EU(\alpha_{e_{jk}} \mid E, E_j = e_{jk})) - EU(\alpha \mid E)$$

(VPI = value of perfect information)

Properties of VPI

- Nonnegative (in expectation) $\forall j, E \ VPI_E(E_j) \ge 0$
- Nonadditive (consider obtaining E_j twice) $VPI_E(E_j, E_k) \neq VPI_E(E_j) + VPI_E(E_k)$
- Order-independent $VPI_E(E_j, E_k) = VPI_E(E_j) + VPI_{E,E_j}(E_k) = VPI_E(E_k) + VPI_{E,E_k}(E_i)$
- Note: when more than one piece of evidence can be gathered, maximizing VPI for each to select one is not always optimal ⇒ evidence-gathering becomes a sequential decision problem

Qualitative Behaviors

- a: choice is obvious, information worth little
- b: choice is nonobvious, information worth a lot
- c: choice is nonobvious, information worth little

Sequential Decision Problems

Example Markov Decision Process (MDP)

- States $s \in S$, actions $a \in A$
- Model: $T(s, a, s') \equiv P(s' \mid s, a) = \text{probability that } a \text{ in } s \text{ leads to } s'$
- Reward function:

$$R(a) = egin{cases} -0.04 & \text{(small penalty) for nonterminal states} \\ \pm 1 & \text{for terminal states} \end{cases}$$

Solving Markov Decision Processes

- In search problems, aim is to find an optimal sequence
- In MDPs, aim is to find optimal policy $\pi(s)$: best action for every possible state s (because we cannot predict where one will end up)
- The optimal policy maximizes (say) the *expected sum of rewards*
- Optimal policy when state penalty R(s) is -0.04:

Risk and Reward

Utility of State Sequences

- Need to understand preferences between *sequences* of states
- Typically consider stationary preferences on reward sequences:

$$[r,r_0,r_1,r_2,\ldots] \succ [r,r_0',r_1',r_2',\ldots] \leftrightarrow [r_0,r_1,r_2,\ldots] \succ [r_0',r_1',r_2',\ldots]$$

- Theorem: there are only two ways to combine rewards over time:
 - **1** Additive utility function:

$$U([s_0, s_1, s_2, \ldots]) = R(s_0) + R(s_1) + R(s_2) + \ldots$$

2 Discounted utility function:

$$U([s_0, s_1, s_2, \ldots]) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \ldots$$

where γ is the discount factor.

Utility of States

- Utility of a state (a.k.a. its value) is defined to be U(s) = expected (discounted) sum of rewards (until termination) assuming optimal actions
- Given the utilities of the states, choosing the best action is just MEU: maximize the expected utility of the immediate successors

Utilities

- Problem: infinite lifetimes ⇒ additive utilities are infinite
- **I** Finite Horizon: termination at a *fixed time* $T \Rightarrow$ nonstationary policy: $\pi(s)$ depends on time left
- Absorbing state(s): with probability 1, agent eventually "dies" for any $pi \Rightarrow$ expected utility of every state is finite
- 3 Discounting: assuming $\gamma < 1, R(s) \le R_{\text{max}}$,

$$U([s_0,\ldots,s_\infty]) = \sum_{t=0}^\infty \gamma^t R(s_t) \le R_{\mathsf{max}}/(1-\gamma)$$

smaller $\gamma \Rightarrow$ shorter horizon

Maximize system gain = average reward per time step: Theorem: optimal policy has constant gain after intial transient

Dynamic Programming: the Bellman Equation

- Definition of utility of states leads to a simple relationship among utilities of neighboring states: expected sum of rewards = current reward + $\gamma \times$ expected sum of rewards after taking best action
- Bellman equation (1957):

$$U(s) = R(s) + \gamma \max_{a} \sum_{s'} U(s')T(s, a, s')$$

■ Example:

$$\begin{split} U(1,1) &= -0.04 + \gamma \; \mathsf{max}(\\ &0.8 U(1,2) + 0.1 U(2,1) + 0.1 U(1,1),\\ &0.9 U(1,1) + 0.1 U(1,2),\\ &0.9 U(1,1) + 0.1 U(2,1),\\ &0.8 U(2,1) + 0.1 U(1,2), 0.1 U(1,1) \end{split}$$

Value Iteration Algorithm

- Idea: start with arbitrary utility values Update to make them *locally consistent* with Bellman equation Everywhere locally consistent ⇒ global optimality
- Repeat for every *s* simultaneously until "no change"

$$U(s) \leftarrow R(s) + \gamma \max_{a} \sum_{s'} U(s') T(s, a, s') \quad \forall \ s$$

Convergence

- Define the max-norm $||U|| = \max_{s} |U(s)|$, so $||U V|| = \max_{s} |U(s)|$ and V
- Let U^t and U^{t+1} be successive approximations to the true utility
- Theorem: for any two approximations U^t and V^t

$$||U^{t+1} - V^{t+1}|| \le ||U^t - V^t||$$

That is, any distinct approximations must get closer to each other so, inparticular, any approximation must get closer to the true U and value iteration converges to a unique, stable optimal solution

- Theorem: if $||U^{t+1} U^t|| < \epsilon$, then $||U^{t+1} U|| < \frac{2\epsilon\gamma}{1-\gamma}$ That is, once the change in U^t becomes small, we are almost done
- MEU policy using U^t may be optimal long before convergence of values

Policy Iteration

- Howard, 1960: search for optimal policy and utility values simultaneously
- To compute utilities given a fixed π (value determination):

$$U(s) = R(s) + \gamma \sum_{s'} U(s')T(s,\pi(s),s') \quad \forall s$$

That is, n simultaneous linear equations in n unknowns, solve in $\mathcal{O}(n^3)$

Modified Policy Iteration

- Policy iteration often converges in few iterations, but each is expensive
- Idea: use a few steps of value iteration (but with π fixed) starting from the value function produced the last time to produce an approximate value determination step
- Often converges much faster than pure value iteration or policy iteration
- Leads to much more general algorithms where Bellman value updates and Howard policy updates can be performed locally in any order
- Reinforcement learning algorithms operate by performing such updates based on the observed transitions made in an initially unknown environment

Partial Observability

- A Partially Observable Markov Decision Process (POMP) has an observation model O(s, e) defining the probability that the agent obtains evidence e when in state s
- \blacksquare Agent does not know which state it is in \Rightarrow makes no sense to talk about policy π
- Theorem (Astrom 1965): the optimal policy in a POMPD is a function $\pi(b)$ where b is the *belief state* (probability distribution over states)
- Can convert a POMPD into an MDP in belief-state space, where T(b, a, b') is the probability that the new belief state is b' given that the current belief state is b and the agent does a

Partial Observability

- Solutions automatically include information-gathering behavior
- If there are n states, b is an n-dimensional real-valued vector \Rightarrow solving POMPDs is very (actually, PSPACE) hard
- \blacksquare The real world is a POMDP (with initially unknown T and O