
Machine Learning
CSC 548, Artificial Intelligence II

Overview

Supervised learning

Generalization

Unsupervised learning

Application: Spam Classification

Input: x = email message

Output: y ∈ {spam, not-spam}

Objective: obtain a predictor f where f (x) = y
in statistics, y is known as a response, and when x is a real
vector, it is known as the covariate.

Types of Prediction Tasks

Binary classification:

f (x) = y , y ∈ {+1,−1}

Regression:
f (x) = y , y ∈ R

Multiclass classification: y is a category

Ranking: y is a permutation

Structured prediction: y is an object built from parts

In the context of classification, f is called a classifier and y is
called a label (or category, class, tag)

Supervised Learning

The starting point of machine learning is data

In supervised learning, the data provides both inputs and
outputs

Notation:
(x , y) specifies that y is the ground-truth output for x

Dtrain = [(x1, y1), . . . , (xn, yn)] is the training data which forms
a partial specification of the desired behavior of a predictor

Learning is about taking Dtrain and producing a predictor f that
approximately works for examples not seen in the training data

Feature Extraction

Feature extractor: given input x , output a set of (feature name,
feature value) pairs

Feature extraction requires intuition about the task and also
what machine learning algorithms are capable of, so it is a bit
of an art

Example: predict whether a string is an email address
possible features:

length
fraction of alphabetic characters
ends with .com
contains @

Feature Vector Notation

Definition: For an input x its feature vector is:

φ(x) = [φ1(x), . . . , φd(x)]

.

where each component φj(x) for j = 1, . . . , d , represents a
feature.

Think of φ(x) ∈ Rd as a point in a high-dimensional space.

Weight Vector

Weight vector: for each feature j , have a real number wj
representing the contribution of feature to prediction.

In the context of binary classification with binary features
(φj(x) ∈ {0, 1}), the weights wj ∈ R have an intuitive
interpretation: if wj is positive, then the presence of feature j
(φj(x) = 1) favors a positive classification (and the converse if
wj is negative.

Linear Predictors

Given a feature vector φ(x) ∈ Rd and a weight vector w ∈ Rd ,
the prediction score is

w · φ(x) =
d∑

j=1
wjφj(x)

That is, the inner product or weighted sum of features

Linear Predictors

For binary classification we have

fw(x) = sign(w · φ(x)) =


+1 if w · φ(x) > 0
−1 if w · φ(x) < 0
? if w · φ(x) = 0

In general, binary classifier fw dfines a hyperplane decision
boundary with normal vector w.

In R2: hyperplane is a line.
In R3: hyperplane is a plane.

Learning Framework

Given a linear predictor fw based on a feature extractor φ, how
do we learn w from the training data.

Loss minimization is a framework that casts learning as an
optimization problem.

Note we can separate the problem into a model (optimization
problem) and algorithm (optimization algorithm)

Loss Functions

Definition: a loss function Loss(x , y ,w) quantifies how
unhappy you would be if you used w to make a prediction on x
when the correct output is y .

The loss function is the object that we want to minimize.

Score and Margin

Correct label: y

Predicted label: y ′ = fw(x) = sign(w · φ(x))

Definition: The score on an example (x , y) is w · φ(x), how
confident we are in predicting +1

Definition: The margin on an example (x , y) is w · φ(x))y , how
correct we are

Binary Classification

Recall the binary classifier: fw(x) = sign(w · φ(x))

Definition: zero-one loss

Loss0−1(x , y ,w = 1[fw(x) 6= y]
= 1[w · (x))y︸ ︷︷ ︸

margin

≤ 0]

Binary Classification

Loss0−1(x , y ,w) = 1[(w · φ(x))y ≤ 0]

Linear Regression

Definition: The residual is (w · φ(x))− y , the amount by which
the prediction fw(x) = w · φ(x) overshoots the target y .

Linear Regression

Definition: the squared loss is

Losssquared(x , y ,w) = (fw(x)− y)2︸ ︷︷ ︸
residual

Example:
w = [2,−1], φ(x) = [2, 0], y = −1
Losssquared(x , y ,w) = 25

Regression Loss Functions

Losssquared(x , y ,w) = (fw(x)− y)2

Lossabsdev(x , y ,w) = |fw(x)− y |

Loss Minimization Framework

Key Idea: minimize training loss

TrainLoss(w) = 1
|Dtrain|

∑
(x ,y)∈Dtrain

Loss(x , y ,w)

min
w∈Rd

TrainLoss(w)

We need to set w to make global tradeoffs – not every example
can be happy.

How to Optimize?

Definition: The gradient ∇wTrainLoss(w) is the direction that
increases the loss the most.

Algorithm: gradient descent
Initialize w = [0, . . . , 0]
For t = 1, . . . ,T :

w← w− η︸︷︷︸
step size

∇wTrainLoss(w)︸ ︷︷ ︸
gradient

Gradient descent is an iterative optimization

The step size η and number of iterations T are
hyperparameters.

Least Squares Regression

Objective function:

TrainLoss(w) = 1
|Dtrain|

∑
(x ,y)∈Dtrain

(w · φ(x)− y)2

Gradient (use chain rule):

TrainLoss(w) = 1
|Dtrain|

∑
(x ,y)∈Dtrain

2(w · φ(x)︸ ︷︷ ︸
prediction

− y︸︷︷︸
target

)φ(x)

Gradient Descent is Slow

TrainLoss(w) = 1
|Dtrain|

∑
(x ,y)∈Dtrain

Loss(x , y ,w)

Gradient descent:

w← w− η∇wTrainLoss(w)

Problem: each iteration requires going over all training
examples – expensive when there is lots of data.

Stochastic Gradient Descent

TrainLoss(w) = 1
|Dtrain|

∑
(x ,y)∈Dtrain

Loss(x , y ,w)

Gradient descent (GD):
w← w− η∇wTrainLoss(w)

Stochastic gradient descent (SGD):
For each (x , y) ∈ Dtrain:

w← w− η∇wLoss(x , y ,w)

Key idea: stochastic updates; it is not about quality, but
quantity

Step Size

w← w− η︸︷︷︸
step size

∇wLoss(x , y ,w)

Question: what should η be?
Near zero: conservative, more stable
Becomes more aggressive, faster as η increases

Strategies:
Constant: η = 0.1
Decreasing: η = 1√

updates made so far

Summary so Far

Linear predictors:

fw(x)based on scorew · φ(x)

Loss minimization: learning as optimization

min
w

TrainLoss(w)

Stochastic gradient descent: optimization algorithm

w← w− η︸︷︷︸
step size

∇wLoss(x , y ,w)

Zero-one Loss

Loss0−1(x , y ,w) = 1[(w · φ(x))y ≤ 0]

Problems:
Gradient of Loss0−1 is 0 everywhere, SGD not applicable
Loss0−1 is insensitive to how badly the model messed up

Hinge Loss

Losshinge(x , y ,w) = max{[1− (w · φ(x))y , 0}

Intuition: hinge loss upper bounds 0-1 loss, have non-trivial
gradient

Try to increse margin if it is less than 1

Hinge Loss

Gradient of hinge loss

∇wLosshinge(x , y ,w) =
{
−φ(x)y if w · φ(x)y < 1
0 if w · φ(x)y > 1

Logistic Regression

Losslogistic(x , y ,w) = log{1 + e−(w·φ(x))y

Intuition: try to increase margin even when it already exceeds 1

Summary so Far

Classification Regression

Predictor fw sign(score) score
Relate to correct y margin (score) residual (score− y)
Loss functions zero-one squared

hinge absolute deviation
logistic

Algorithm SGD SGD

Components

Score (drives prediction)

w · φ(x)

Learning chooses w via optimization

Feature extraction specifies φ(x) based on domain knowledge

Feature Templates

A feature template is a group of features all computed in a
similar way

A feature template allows us to define a set of related features

A feature template can be written as a description with a blank

Examples:
Length greater than ___
Pixel intensity of position ___, ___

Feature Representation

Array representation
Good for dense features

Dictionary representation
Good for sparse features

Hypothesis Class

Predictor:

fw(x) = w · φ(x) or sign(w · φ(x))

Definition: A hypothesis class is the set of possible predictors
with a fixed φ(x) and varying w:

F = {fw : w ∈ Rd}

Example: Beyond Linear Functions

Regression: x ∈ R, y ∈ R

Linear functions: φ(x) = x

F1 = {x 7→ w1x + w2x2 : w1 ∈ R,w2 = 0}

Quadratic functions: φ(x) = [x , x2]

F1 = {x 7→ w1x + w2x2 : w1 ∈ R,w2 ∈ R}

Linear in What?

Prediction driven by score w · φ(x)
Linear in w: yes
Linear in φ(x): yes
Linear in x: no (x is not necessarily even a vector)

Key idea: non-linearity
Predictors fw can be expressive non-linear functions and decision
boundaries of x
Score w · φ(x) is a linear function of w, which permits efficient
learning

Summary so Far

Feature templates: organize related (spares) features

Hypothesis class: defined by features (what is possible)

Linear classifiers: can produce non-linear decision boundaries

Motivating Example

Predicting car collision

Input: position of two oncoming cars x = [x1, x2]

Output: whether safe (y = +1) or collide (y = −1)

True function: safe if cars sufficiently far
$y = sign(|x1 − x2| − 1)

Examples:

x y

[1, 3] +1
[3, 1] +1
[1, 0.5] −1

Decomposing the Problem
Test if car 1 is far right of car 2

h1 = 1[x1 − x2 ≥ 1]

Test if car 2 is far right of car 1

h2 = 1[x2 − x1 ≥ 1]

Safe if at least one is true

y = sign(h1 + h2)

x h1 h2 y

[1, 3] 0 1 +1
[3, 1] 1 0 +1
[1, 0.5] 0 0 −1

Learning Strategy

Define: φ(x) = [1, x1, x2]

Intermediate hidden subproblems:

h1 = 1[v1 · φ(x) ≥ 0]

h2 = 1[v2 · φ(x) ≥ 0]

Final prediction

fV,w(x) = sign(w1h1 + w2h2)

Key idea: joint learning – learn both hidden subproblems
V = (v1, v2) and combination weights w = [w1,w2]

Gradients

Problem: gradient of h1 with respect to v1 is 0

Definition: the logistic function maps (−∞,∞) to [0, 1]:

σ(z) = (1 + e−z)−1

Derivative

σ′(z) = σ(z)(1− σ(z))

Solution: h1 = σ(v1 · φ(x))

Linear Functions

Linear functions:

Output: score = w · φ(x)

Neural Networks

Neural network (one hidden layer):

Intermediate hidden units:

hj = σ(vj · φ(x))

σ(z) = (1 + e−z)−1

Output: score = w · h

Training Neural Networks

Optimization problem:

minV,w TrainLoss(V,w)

Goal compute gradient

∇V,wTrainLoss(V,w)

Mathematically: grind through the chain rule

Algorithm: backpropagation

Nearest Neighbors

Algorithm: nearest neighbors

Training: just store Dtrain

Predictor f (x ′):
Find (x , y) ∈ Dtrain where ‖φ(x)− φ(x ′)‖ is smallest
return y

Idea: similar examples tend to have similar outputs

Summary of Learners

Linear predictors: combine raw features
prediction is fast, easy to learn, weak use of features

Neural networks: combine learned features
prediction is fast, hard to learn, powerful use of features

Nearest neighbors: predict according to similar examples
prediction is slow, easy to learn, powerful use of features

Evaluation

How good is a predictor f ?

Goal: minimize error on unseen future examples

But, we do not have unseen examples

So, make a test set Dtest that contains examples not used for
training

Approximation and Estimation Error

Approximation error: how good is the hypothesis class?

Estimation error: how good is the learned predictor relative to
the potential of the hypothesis class?

Err(f̂)− Err(g)︸ ︷︷ ︸
estimation

+Err(g)− Err(f ∗)︸ ︷︷ ︸
approximation

+

where f ∗ is the target predictor and g ∈ F is the best predictor
in the hypothesis class in the sense of minimizing test error

Effect of Hypothesis Class Size

As the hypothesis class size increases
approximation error decreases

because taking the min over a larger set
estimation error increases

because harder to estimate something more complex
Idea: minimize training error, but keep the hypothesis class
small

Hyperparameters

Definition: hyperparameters are properties of the learning
algorithm, such as features, number of iterations step size, etc.

How do we choose hyperparameters?
Choose hyperparameters to minimize Dtrain error? No, the
solution would be to include all features and set the iterations
to infinity

Choose hyperparameters to minimize Dtest error? No, choosing
based on Dtest makes it an unreliable estimate of error

Validation

Problem: cannot use the test set

Solution: randomly take out, say, 10-50% of the training data
and use it instead of the test set to estimate test error

Definition: a validation set is taken out of the training data
which acts as a surrogate for the test set.

Development Cycle

Split data into training, validation, and test sets

Look at data to get intuition

Repeat:
implement feature / adjust hyperparameters
run learning algorithm
sanity check training and validation error rates
look at errors to brainstorm improvements

Run on test set to get final error rates

Supervision

Supervised learning
Prediction: Dtrain contains input-output pairs (x , y)
Fully-labeled data is very expensive to obtain

Unsupervised learning
Clustering: Dtrain only contains inputs x
Unlabeled data is much cheaper to obtain
Key idea: data has lots of rich latent structures and we want to
discover this structure automatically

Clustering

Input: training set of input points

Dtrain = {x1, . . . , xn}

Output: assignment of each point to a cluster

[z1, . . . , zn] where zi ∈ {1, . . . ,K}

Intuition: want similar points to be in the same cluster, and
dissimilar points to be in different clusters

K-means Objective

Setup:
Each cluster k = 1, . . . ,K is represented by a centroid µk ∈ Rd

Intuition: want each point φ(xi) close to its assigned centroid
µzi

Objective function:

Losskmeans(z , µ) =
∑n

i=1‖φ(xi)− µzi‖2

need to choose centroids µ and assignments z jointly

K-means Algorithm
Step 1 Goal: given centroids µi , . . . , µK , assign each point to the
best centroid.

For each point i = 1, . . . , n:
Assign i to cluster with closest centroid:

zi ← mink=1,...,K‖φ(xi)− µk‖2

Step 2 Goal: given cluster assignments z1, . . . , zn, find the best
centroids µ1, . . . , µK .

For each cluster k = 1, . . . ,K :
Set µk to average of points assigned to cluster k:

µk ←
1

|{i : zi = k}|
∑

i :zi =k
φ(xi)

For each point i = 1, . . . , n:
Assign i to cluster with closest centroid:

zi ← mink=1,...,K‖φ(xi)− µk‖2

K-means Algorithm

Objective minz minµ Losskmeans(z , µ)

Initialize µ1, . . . , µK randomly

For t = 1, . . . ,T :
Step 1: set assignments z given µ
Step 2: set centroids µ given z

Local Minima

K-means is guaranteed to converge to a local minimum, but is
not guaranteed to find the global minimum

Solutions:
Run multiple times from different random initializations
Initialize with a heuristic (K-means++)

Summary

Feature extraction (think hypothesis classes) [modeling]

Prediction (linear, neural network, k-means) [modeling]

Loss functions (compute gradients) [modeling]

Optimization (stochastic gradient descent, alternating
minimization) [learning]

Generalization (think development cycle) [modeling]

