Machine Learning
CSC 548, Atrtificial Intelligence 1l

Overview

m Supervised learning
m Generalization

m Unsupervised learning

Application: Spam Classification

m Input: x = email message
m Output: y € {spam, not-spam}
m Objective: obtain a predictor f where f(x) =y

m in statistics, y is known as a response, and when x is a real
vector, it is known as the covariate.

Types of Prediction Tasks

Binary classification:
f(X) =Y,y € {+17 _1}

Regression:
f(x)=y,yeR
Multiclass classification: y is a category
Ranking: y is a permutation
Structured prediction: y is an object built from parts

In the context of classification, f is called a classifier and y is
called a label (or category, class, tag)

Supervised Learning

m The starting point of machine learning is data

m In supervised learning, the data provides both inputs and
outputs

m Notation:
m (x,y) specifies that y is the ground-truth output for x

B Diain = [(x1, 1), - - -, (Xn, ¥n)] is the training data which forms
a partial specification of the desired behavior of a predictor

m Learning is about taking Dirain and producing a predictor f that
approximately works for examples not seen in the training data

Feature Extraction

m Feature extractor: given input x, output a set of (feature name,
feature value) pairs

m Feature extraction requires intuition about the task and also
what machine learning algorithms are capable of, so it is a bit
of an art

m Example: predict whether a string is an email address

m possible features:
m length
m fraction of alphabetic characters
m ends with .com
m contains @

Feature Vector Notation

m Definition: For an input x its feature vector is:
¢(X) = [¢1(X)> SRR gbd(X)]

where each component ¢;(x) for j=1,...,d, represents a
feature.

m Think of ¢(x) € R? as a point in a high-dimensional space.

Weight Vector

m Weight vector: for each feature j, have a real number w;
representing the contribution of feature to prediction.

m In the context of binary classification with binary features
(¢j(x) € {0,1}), the weights w; € R have an intuitive
interpretation: if w; is positive, then the presence of feature j
(¢j(x) = 1) favors a positive classification (and the converse if
w; is negative.

Linear Predictors

m Given a feature vector ¢(x) € R? and a weight vector w € R,
the prediction score is

d
w-p(x) = wigy(x)

j=1

That is, the inner product or weighted sum of features

Linear Predictors

m For binary classification we have

+1 ifw-
fw(x) =sign(w- ¢(x)) =4 —1 ifw-
7 ifwe

m In general, binary classifier f,, dfines a hyperplane decision

boundary with normal vector w.

m In R?: hyperplane is a line.
m In R3: hyperplane is a plane.

Learning Framework

m Given a linear predictor f,, based on a feature extractor ¢, how
do we learn w from the training data.

m Loss minimization is a framework that casts learning as an
optimization problem.

m Note we can separate the problem into a model (optimization
problem) and algorithm (optimization algorithm)

Loss Functions

Definition: a loss function Loss(x, y,w) quantifies how
unhappy you would be if you used w to make a prediction on x
when the correct output is y.

The loss function is the object that we want to minimize.

Score and Margin

Correct label: y
Predicted label: y’ = fy(x) = sign(w - ¢(x))

Definition: The score on an example (x,y) is w - ¢(x), how
confident we are in predicting +1

Definition: The margin on an example (x, y) is w - ¢(x))y, how
correct we are

Binary Classification

m Recall the binary classifier: fy,(x) = sign(w - ¢(x))

m Definition: zero-one loss

Lossg—1(x,y,w = 1[f(x) # y]
1w (x))y < 0]
———

margin

Binary Classification

Loss(z,y, w)

3 2 1 0 1 2 3
margin (w - ¢(x))y

m Lossp_1(x,y,w) = 1[(w- ¢(x))y <0]

Linear Regression

#(6(2),)
8 2fresidual w - ¢(x) — yi

¢(z)

m Definition: The residual is (w - ¢(x)) — y, the amount by which
the prediction fy(x) = w - ¢(x) overshoots the target y.

Linear Regression

m Definition: the squared loss is

Losssquared(xa Y, W) = (fW(X) -)/)2
—— ——

residual

m Example:

mw=[2,-1],¢(x) =[2,0],y = —1
| Losssquared(xvva) =25

Regression Loss Functions

1

Loss(z,y, w)

0
3 -2 -1 0 1 2 3

residual (w - ¢(z)) — y

u Losssquared(Xy}/:W) = (fW(X) - }/)2
u LOSSabsdev(X,y,W) = ‘fW(X) - y|

Loss Minimization Framework

m Key Idea: minimize training loss

1

| train| (

TrainLoss(w) = Z Loss(x, y,w)

Xv)’)EDtrain

min TrainLoss(w)
weRd

m We need to set w to make global tradeoffs — not every example
can be happy.

How to Optimize?

m Definition: The gradient V, TrainLoss(w) is the direction that
increases the loss the most.

m Algorithm: gradient descent

m Initialize w = [0, ..., 0]
mFort=1,...,T:
mw«—w— 7 VyTrainLoss(w)
~ —— —

step size gradient

m Gradient descent is an iterative optimization

m The step size n and number of iterations T are
hyperparameters.

Least Squares Regression

m Objective function:

1
|Dtrain|

TrainLoss(w) =

> (weo(x) —y)?

(Xay)EDtrain

m Gradient (use chain rule):

1

TrainLoss(w) = Dol
train

> A olg y o

(%,y)€Drrain prediction target

Gradient Descent is Slow

_ 1
’Dtrain’

Loss(x, y,w)
(Xv)/)GDtrain

TrainLoss(w)
m Gradient descent:
w < w — nVy TrainLoss(w)

m Problem: each iteration requires going over all training
examples — expensive when there is lots of data.

Stochastic Gradient Descent

1

’ train’

TrainLoss(w) = Loss(x, y,w)

(x%,¥)€Dtrain
m Gradient descent (GD):

m W w— 7V, TrainLoss(w)
m Stochastic gradient descent (SGD):

m For each (x,y) € Dyain:
B w<— w—nVyloss(x,y,w)

m Key idea: stochastic updates; it is not about quality, but
quantity

Step Size

w—w-— 17 V,dloss(x,y,w)
~—

step size

m Question: what should 7 be?

m Near zero: conservative, more stable

m Becomes more aggressive, faster as 7 increases
m Strategies:

m Constant: n =0.1

m Decreasing: n = 1

\/# updates made so far

Summary so Far

m Linear predictors:

fw(x)based on scorew - ¢(x)

m Loss minimization: learning as optimization

min TrainLoss(w)

m Stochastic gradient descent: optimization algorithm

w<—w-— 1 V,loss(x,y,w)
—~

step size

/Zero-one Loss

Losso—1(x,y, w) = 1[(w - ¢(x))y < 0]

— 4

B, 3

=

Hﬂ 2

s

? 1

Q

= 0 . . —
-3 -2 -1 0 1 2 3

margin (w - ¢(z))y
m Problems:

m Gradient of Lossy_1 is 0 everywhere, SGD not applicable
m Lossg_; is insensitive to how badly the model messed up

Loss(z, y, w)

Hinge Loss

LosShinge(X, y, w) = max{[1 — (w - ¢(x))y, 0}

s

(]

= Lossg.1
- Losspinge

M

[

=]
&

2 1 0 1 2 3
margin (w - ¢(z))y

Intuition: hinge loss upper bounds 0-1 loss, have non-trivial
gradient

Try to increse margin if it is less than 1

Hinge Loss

m Gradient of hinge loss

Vwlosspinge(x, y,w) = { a¢(X)y :ix igigi i 1

Logistic Regression

LOSS/Og,'st,'C(X,_y, W) = |og{]_ + ef(w-(j)(x))y

Loss(z,y, w)

0 |
3 2 -1 0 1 2 3

margin (w - ¢(z))y

m Intuition: try to increase margin even when it already exceeds 1

Summary so Far

Classification

Regression

Predictor f,,
Relate to correct y
Loss functions

Algorithm

sign(score)
margin (score)
zero-one

hinge

logistic

SGD

score
residual (score — y)
squared

absolute deviation

SGD

Components

m Score (drives prediction)
w - ¢(x)

m Learning chooses w via optimization

m Feature extraction specifies ¢(x) based on domain knowledge

Feature Templates

m A feature template is a group of features all computed in a
similar way

m A feature template allows us to define a set of related features
m A feature template can be written as a description with a blank

m Examples:

m Length greater than
m Pixel intensity of position ,

Feature Representation

m Array representation
m Good for dense features
m Dictionary representation
m Good for sparse features

Hypothesis Class

m Predictor:
fw(x) = w - ¢(x) or sign(w - ¢(x))

m Definition: A hypothesis class is the set of possible predictors
with a fixed ¢(x) and varying w:

F = {fy:weR}

Example: Beyond Linear Functions

m Regression: x e R,y € R

m Linear functions: ¢(x) = x

F1={x— wix+ wax?: w; € R,wp, =0}

m Quadratic functions: ¢(x) = [x, x?]

.7:1:{XI—>W1X—|—WQX2:WleR,WQER}

Linear in What?

m Prediction driven by score w - ¢(x)

m Linear in w: yes
m Linear in ¢(x): yes
m Linear in x: no (x is not necessarily even a vector)

m Key idea: non-linearity

m Predictors f,, can be expressive non-linear functions and decision
boundaries of x

m Score w - ¢(x) is a linear function of w, which permits efficient
learning

Summary so Far

m Feature templates: organize related (spares) features
m Hypothesis class: defined by features (what is possible)

m Linear classifiers: can produce non-linear decision boundaries

Motivating Example

Predicting car collision

Input: position of two oncoming cars x = [xy, xg]

Output: whether safe (y = +1) or collide (y = —1)

m True function: safe if cars sufficiently far
$y =sign(|x1 — x2| — 1)

m Examples:

X y

[1,3] +1
3,1] +1

[1,05] —1

Decomposing the Problem

m Test if car 1 is far right of car 2
hi =1[x1 — x2 > 1]

m Test if car 2 is far right of car 1
hy = 1[xo — x3 > 1]

m Safe if at least one is true

y = sign(hy + h2)

X h1 h2 y

[1,3] 0 1 +1
3, 1 0 +1
[1,05] 0 0 -1

Learning Strategy

Define: ¢(x) = [1, x1, x2]
Intermediate hidden subproblems:
hi = 1[v1 - ¢(x) > 0]

hy = 1[vz - ¢(x) > 0]

Final prediction

fv.w(x) = sign(wihy + wahy)

Key idea: joint learning — learn both hidden subproblems
V = (v1, v2) and combination weights w = [wy, ws]

Gradients

Problem: gradient of h; with respect to v is 0
Definition: the logistic function maps (—o0, o) to [0, 1]:
o(z)=(1+e %)t

Derivative

0'(z) = o(2)(1 = 0(2))

Solution: h; = o(vy - ¢(x))

Linear Functions

m Linear functions:

45(-‘11)1 w

o(x)2 score
#(z)s

m Output: score = w - ¢(x)

Neural Networks

m Neural network (one hidden layer):

m Intermediate hidden units:
hj = o(v; - ¢(x))
o(z) = (1+e %) 1

m Output: score=w-h

Training Neural Networks

m Optimization problem:
miny w TrainLoss(V, w)
m Goal compute gradient
Vv wTrainLoss(V, w)
m Mathematically: grind through the chain rule

m Algorithm: backpropagation

Nearest Neighbors

Algorithm: nearest neighbors
Training: just store Diyain
Predictor f(x'):

m Find (x,¥) € Dyain Where ||¢(x) — ¢(x')|| is smallest
m return y

Idea: similar examples tend to have similar outputs

Summary of Learners

m Linear predictors: combine raw features
m prediction is fast, easy to learn, weak use of features
m Neural networks: combine learned features
m prediction is fast, hard to learn, powerful use of features
m Nearest neighbors: predict according to similar examples
m prediction is slow, easy to learn, powerful use of features

Evaluation

How good is a predictor 7
Goal: minimize error on unseen future examples
But, we do not have unseen examples

So, make a test set Diest that contains examples not used for
training

Approximation and Estimation Error

m Approximation error: how good is the hypothesis class?

m Estimation error: how good is the learned predictor relative to
the potential of the hypothesis class?

A

Err(f) — Err(g) +Err(g) — Er(F7) +

estimation approximation

where f* is the target predictor and g € F is the best predictor
in the hypothesis class in the sense of minimizing test error

Effect of Hypothesis Class Size

m As the hypothesis class size increases
m approximation error decreases
m because taking the min over a larger set
m estimation error increases
B because harder to estimate something more complex
m Idea: minimize training error, but keep the hypothesis class
small

Hyperparameters

m Definition: hyperparameters are properties of the learning
algorithm, such as features, number of iterations step size, etc.

m How do we choose hyperparameters?

m Choose hyperparameters to minimize Dy, error? No, the
solution would be to include all features and set the iterations
to infinity

m Choose hyperparameters to minimize Dy error? No, choosing
based on Dyt makes it an unreliable estimate of error

Validation

m Problem: cannot use the test set

m Solution: randomly take out, say, 10-50% of the training data
and use it instead of the test set to estimate test error

m Definition: a validation set is taken out of the training data
which acts as a surrogate for the test set.

Development Cycle

Split data into training, validation, and test sets
Look at data to get intuition

Repeat:

implement feature / adjust hyperparameters
run learning algorithm

sanity check training and validation error rates
look at errors to brainstorm improvements

Run on test set to get final error rates

Supervision

m Supervised learning

m Prediction: Dy,in contains input-output pairs (x, y)
m Fully-labeled data is very expensive to obtain

m Unsupervised learning

m Clustering: Dyyain only contains inputs x

m Unlabeled data is much cheaper to obtain

m Key idea: data has lots of rich latent structures and we want to
discover this structure automatically

Clustering

m Input: training set of input points
Drrain = {X1, .-, Xn}

m Output: assignment of each point to a cluster
[z1,..., 2] where z; € {1,...,K}

m Intuition: want similar points to be in the same cluster, and
dissimilar points to be in different clusters

K-means Objective

m Setup:
m Each cluster k = 1,..., K is represented by a centroid y, € RY

m Intuition: want each point ¢(x;) close to its assigned centroid
Hz;

m Objective function:

Losskmeans(27 ,U') = 27:1”¢(Xi) - MZ:‘H2

need to choose centroids i and assignments z jointly

K-means Algorithm

Step 1 Goal: given centroids p;, ..., ik, assign each point to the
best centroid.

m For each pointi=1,... n:
m Assign i to cluster with closest centroid:
m z o miner, k| 9(00) — pell®

Step 2 Goal: given cluster assignments z, ..., z,, find the best
centroids p1, ..., liK-
m For each cluster k =1,... K:

m Set 1y to average of points assigned to cluster k:

1
M g = k) 2)

izj=

m For each pointi=1,...,n:
m Assign i to cluster with closest centroid:
Bz minget, k]l (x) —)

K-means Algorithm

m Objective min, min,, Losskmeans(z, 1)
m Initialize p1, ..., ux randomly
mFort=1,...,T:

m Step 1: set assignments z given p
m Step 2: set centroids p given z

L ocal Minima

m K-means is guaranteed to converge to a local minimum, but is
not guaranteed to find the global minimum

m Solutions:

m Run multiple times from different random initializations
m Initialize with a heuristic (K-means++)

Summary

Feature extraction (think hypothesis classes) [modeling]
Prediction (linear, neural network, k-means) [modeling]
Loss functions (compute gradients) [modeling]

Optimization (stochastic gradient descent, alternating
minimization) [learning]

Generalization (think development cycle) [modeling]

