
Games
CSC 548, Artificial Intelligence II



Chance/Non-determinism in Games

Approaches such as minimax are only appropriate for
deterministic games.

Some games have a element of randomness, often imparted via
dice or shuffling.

Considering games of chance
more realistic in the sense that life is not deterministic

more complicated which allows us to examine additional search
techniques



Example: Backgammon

Basic idea: move your pieces around the board and then off;
available moves are determined by rolling two dice.



Example: Backgammon

If we know the dice rolls, then it is straightforward to get the
next states

For example, white rolls a 5 and a 6 the possible moves are:
(7-2, 7-1),
(17-12, 17-11),
. . .



Searching with Chance (Backgammon)

We know there are 36 different dice rolls (21 unique)

Idea: insert a “chance” layer between each ply with a
branching factor of 21

Note: this drastically increases the branching factor (by a factor
of 21!)

Associate a probability with each chance branch
each double has a probability of 1/36 and all others have a
probability of 1/18

In general, the probabilities are easy to calculate



Example Search Tree



Expected Minimax Value
Rather that the actual value, we calculate the expected value
based on the probabilities

Evaluation of a chance node:
∑

successors(s) p(s) ∗ v(s)



Chance and Evaluation Functions

In the case of expected minimax value the magnitude of value
matters, not just the ordering.

That is, the behavior is only preserved by a positive linear
transformation of the evaluation function



Games with Chance

Given a branching factor b and a chance factor n, the search
runtime becomes O((nb)m)

For this reason many games of chance do not use much search
Example: backgammon frequently only looks ahead 3-ply

Instead, evaluation functions play a more important roll
Example: TD-Gammon learned an evaluation function by
playing itself over a million times



Partially Observable Games

In many games we do not have all the information about the
world

poker
bridge
scrabble
Kreigspiel

Challenges
The state space can be huge
The minimax assumption is probably not true
May make move just to explore



Modern Heuristic Search Components

Search algorithm

Evaluation function, heuristic

Simulation

Combining all three is relatively new



Example: Go

The minimax algorithm is not effective for the game of Go.

Reasons:
Huge state space

average branching factor approximately 250

average game length (tree depth) greater than 250

No good evaluation function (until recently)



Monte Carlo Simulation

Do not need an evaluation function

Process:
Simulate the game using random moves
Score the game at the end
Use that as the evaluation

Making random moves appears bad, but tends to work for
some games

Random moves often preserve some difference between a good
position and a bad one



Basic (Pure) Monte Carlo Search

1 Play many random games starting with each possible move

2 Keep winning statistics for each move

3 Play the move with the best winning percentage



Monte Carlo Tree Search

Idea: use results of simulations to guide the growth of the
game tree

Exploitation: focus on promising moves

Exploration: focus on moves where uncertainty about
evaluation is high



Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) builds a search tree
node-by-node with the following steps:

1 Selection: select a leaf node starting from the root node that
has a potential child from which no simulation has yet been
initiated

2 Expansion: if the selected node is not a terminal node, then
create one or more child nodes and select one

3 Simulation (rollout): run a simulated playout from the selected
child node until a result is achieved

4 Backpropagation: Update the current move sequence with the
simulation result



Monte Carlo Tree Search Example



Monte Carlo Tree Search Algorithm



Upper Confidence Bound

An effective selection policy is called “upper confidence bounds
applied to trees” which ranks each possible move based on the
formula

UCB1(n) = U(n)
N(n)︸ ︷︷ ︸

exploitation

+C
√

ln N(parent(n))
N(n)︸ ︷︷ ︸

exploration

where U(n) is the utility of node n, N(n) is the number of
playouts through node n and C is a constant that balances
exploration and exploitation (often set to

√
2)



Monte Carlo Tree Search Comments

Successful in games and in probabilistic planning
Backgammon, Go, General Game Playing, . . .

Similar methods work in multiplayer games, planning, energy
resource allocation, . . .

Scales to parallel machines

Still poorly understood as to why it works so well


