Games

CSC 548, Artificial Intelligence II

Chance/Non-determinism in Games

- Approaches such as minimax are only appropriate for deterministic games.
- Some games have a element of randomness, often imparted via dice or shuffling.
- Considering games of chance
- more realistic in the sense that life is not deterministic
- more complicated which allows us to examine additional search techniques

Example: Backgammon

- Basic idea: move your pieces around the board and then off; available moves are determined by rolling two dice.

Example: Backgammon

- If we know the dice rolls, then it is straightforward to get the next states
- For example, white rolls a 5 and a 6 the possible moves are:
- ($7-2,7-1$),
- (17-12, 17-11),

Searching with Chance (Backgammon)

- We know there are 36 different dice rolls (21 unique)

■ Idea: insert a "chance" layer between each ply with a branching factor of 21

- Note: this drastically increases the branching factor (by a factor of 21!)
- Associate a probability with each chance branch
- each double has a probability of $1 / 36$ and all others have a probability of $1 / 18$

■ In general, the probabilities are easy to calculate

Example Search Tree

Expected Minimax Value

- Rather that the actual value, we calculate the expected value based on the probabilities
- Evaluation of a chance node: $\sum_{\text {successors(s) }} p(s) * v(s)$

MAX

CHANCE

MIN

Chance and Evaluation Functions

MAX

CH ANCE

MIN

- In the case of expected minimax value the magnitude of value matters, not just the ordering.
- That is, the behavior is only preserved by a positive linear transformation of the evaluation function

Games with Chance

- Given a branching factor b and a chance factor n, the search runtime becomes $\mathcal{O}\left((n b)^{m}\right)$
- For this reason many games of chance do not use much search
- Example: backgammon frequently only looks ahead 3-ply

■ Instead, evaluation functions play a more important roll

- Example: TD-Gammon learned an evaluation function by playing itself over a million times

Partially Observable Games

- In many games we do not have all the information about the world
- poker
- bridge
- scrabble
- Kreigspiel

■ Challenges

- The state space can be huge
- The minimax assumption is probably not true
- May make move just to explore

Modern Heuristic Search Components

- Search algorithm
- Evaluation function, heuristic
- Simulation
- Combining all three is relatively new

Example: Go

- The minimax algorithm is not effective for the game of Go.
- Reasons:
- Huge state space

■ average branching factor approximately 250
■ average game length (tree depth) greater than 250

- No good evaluation function (until recently)

Monte Carlo Simulation

- Do not need an evaluation function
- Process:
- Simulate the game using random moves
- Score the game at the end
- Use that as the evaluation
- Making random moves appears bad, but tends to work for some games
- Random moves often preserve some difference between a good position and a bad one

Basic (Pure) Monte Carlo Search

1 Play many random games starting with each possible move
2 Keep winning statistics for each move
3 Play the move with the best winning percentage

Monte Carlo Tree Search

■ Idea: use results of simulations to guide the growth of the game tree

- Exploitation: focus on promising moves
- Exploration: focus on moves where uncertainty about evaluation is high

Monte Carlo Tree Search

- Monte Carlo Tree Search (MCTS) builds a search tree node-by-node with the following steps:

1 Selection: select a leaf node starting from the root node that has a potential child from which no simulation has yet been initiated

2 Expansion: if the selected node is not a terminal node, then create one or more child nodes and select one

3 Simulation (rollout): run a simulated playout from the selected child node until a result is achieved

4 Backpropagation: Update the current move sequence with the simulation result

Monte Carlo Tree Search Example

Monte Carlo Tree Search Algorithm

```
function MONTE-CARLO-TREE-SEARCH(state) returns an action
    tree }\leftarrow\operatorname{NODE(state)
    while IS-TIME-REMAINING() do
        leaf }\leftarrow\mathrm{ SELECT(tree)
        child}\leftarrow\mathrm{ EXPAND(leaf)
        result }\leftarrow\mathrm{ SIMULATE(child)
        BACK-PROPAGATE(result, child)
    return the move in ACTIONS(state) whose node has highest number of playouts
```


Upper Confidence Bound

- An effective selection policy is called "upper confidence bounds applied to trees" which ranks each possible move based on the formula

$$
\operatorname{UCB1}(n)=\underbrace{\frac{U(n)}{N(n)}}_{\text {exploitation }}+C \underbrace{\sqrt{\frac{\ln N(\text { parent }(n))}{N(n)}}}_{\text {exploration }}
$$

where $U(n)$ is the utility of node $n, N(n)$ is the number of playouts through node n and C is a constant that balances exploration and exploitation (often set to $\sqrt{2}$)

Monte Carlo Tree Search Comments

- Successful in games and in probabilistic planning
- Backgammon, Go, General Game Playing, ...
- Similar methods work in multiplayer games, planning, energy resource allocation, ...
- Scales to parallel machines
- Still poorly understood as to why it works so well

