## Bayes' Nets

CSC 548, Artificial Intelligence II

## Bayesian Networks

- A simple graphical notation for conditional independence assertions and hence for compact specification of full joint distributions
- Syntax:
- a set of nodes, one per variable
- a directed acyclic graph (link $\approx$ "directly influences")
- a conditional distribution for each node given its parents: $P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$
- In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over $X_{i}$ for each combination of parent values


## Example

- Topology of network encodes conditional independence assertions:


Figure 1: image

- Weather is independent of other variables
- Toothache and Catch are conditionally independent given Cavity


## Example

■ I am at work, neighbor John calls to say my alarm is ringing, but neighbor Mary does not call. Sometimes it is set off by minor earthquakes. Is there a burglar?

■ Variables: Burglar, Earthquake, Alarm, JonhCalls, MaryCalls
■ Network topology reflects "causal" knowledge

- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm causes Mary to call
- The alarm causes John to call


## Example Continued



Figure 2: image

## Compactness

- A CPT for Boolean $X_{i}$ with $k$ Boolean parents has $2^{k}$ rows for the combinations of parent values
- Each row requires one number $p$ for $X_{i}=$ true (the number for $X_{i}=$ false is just $1-p$ )

■ If each variable has no more than $k$ parents, the complete network requires $\mathcal{O}\left(n \cdot 2^{k}\right)$ numbers

- That is, grows linearly with $n$, vs. $\mathcal{O}\left(2^{n}\right)$ for the full joint distribution
- For the burglary net, $1+1+4+2+2=10$ numbers (vs. $2^{5}-1=31$ )


## Global Semantics

- "Global" semantics defines the full joint distribution as the product of the local conditional distributions:
$P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid\right.$ parents $\left(X_{i}\right)$
- Example, Burglary net:
$P(j \wedge m \wedge a \wedge \neg b \wedge \neg e)$
$=P(j \mid a) P(m \mid a) P(a \mid \neg b, \neg e) P(\neg b) P(\neg e)$
$=0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998$
$\approx 0.00063$


## Local Semantics

- Local semantics: each node is conditionally independent of its nondescendants given its parent


Figure 3: image

## Markov Blanket

- Each node is conditionally independent of all others given its Markov blanket: parents + children + children's parents


Fioure 4• image

## Constructing Bayesian Networks

- Need a method such that a series of locally testable assertions of conditional independence guarantees the required global semantics
- Choose an ordering of variables $X_{1}, \ldots, X_{n}$
- For $i=1$ to $n$, add $X_{i}$ to the network and select parents from $X_{1}, \ldots, X_{i-1}$ such that
$P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)=P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right.$
- This choice of parents guarantees the global semantics:

$$
\begin{aligned}
P\left(X_{1}, \ldots, X_{n}\right) & =\prod_{i=1}^{n} P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right) \\
& =\prod_{i=1}^{n} P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right.
\end{aligned}
$$

## Example

■ Suppose we choose the ordering $M, J, A, B, E$


JohnCalls

Figure 5: image

- $P(J \mid M)=P(J)$ ?


## Example

■ Suppose we choose the ordering $M, J, A, B, E$


Figure 6: image

- $P(A \mid J, M)=P(A \mid J)$ ?
- $P(A \mid J, M)=P(A)$ ?


## Example

■ Suppose we choose the ordering $M, J, A, B, E$


## Burglary

Figure 7: image

- $P(B \mid A, J, M)=P(B \mid A)$ ?
- $P(B \mid A, J, M)=P(B)$ ?


## Example

■ Suppose we choose the ordering $M, J, A, B, E$


Figure 8: image

- $P(E \mid B, A, J, M)=P(E \mid A)$ ?
- $P(E \mid B, A, J, M)=P(E \mid A, B)$ ?


## Example



Figure 9: image

- Deciding conditional independence is hard in noncausal directions
- Assessing conditional probabilities is hard in noncausal directions


## Example: Car Diagnosis

■ Initial evidence: car will not start
■ Testable variables (green), "broken, so fix it" variables (orange)

- Hidden variables (gray) ensure sparse structure, reduce parameters


Figure 10: image

## Example: Car Insurance



Figure 11: image

## Compact Conditional Distributions

- CPT grows exponentially with number of parents
- CPT becomes infinite with continuous valued parent or child
- Solution: canonical distributions that are defined compactly
- Deterministic nodes are the simplest case: $X=f(\operatorname{Parents}(X))$ for some function $f$
- Examples:
- NorthAmerican $\leftrightarrow$ Canadian $\vee$ US $\vee$ Mexican
- $\frac{\partial L \text { evel }}{\partial t}=$ inflow + precipitation - outflow - evaporation


## Compact Conditional Distributions

■ Noisy-OR distributions model multiple noninteracting causes

- Parents $U_{1}, \ldots, U_{k}$ include all causes
- Independent failure probability $q_{i}$ for each cause alone

$$
P\left(X \mid U_{1}, \ldots, U_{j}, \neg U_{j+1}, \ldots, \neg U_{k}\right)=1-\prod_{i=1}^{j} q_{i}
$$

| Cold | Flu | Malaria | $P($ Fever $)$ | $P(\neg$ Fever $)$ |
| :---: | :---: | :---: | :--- | :--- |
| F | F | F | $\mathbf{0 . 0}$ | 1.0 |
| F | F | T | 0.9 | $\mathbf{0 . 1}$ |
| F | T | F | 0.8 | $\mathbf{0 . 2}$ |
| F | T | T | 0.98 | $0.2=0.2 \times 0.1$ |
| T | F | F | 0.4 | $\mathbf{0 . 6}$ |
| T | F | T | 0.4 | $0.06=0.6 \times 0.1$ |
| T | T | F | 0.88 | $0.12=0.6 \times 0.2$ |
| T | T | T | 0.988 | $0.12=0.6 \times 0.2 \times 0.1$ |

- Number of parameters linear in number of parents


## Hybrid (Discrete + Continuous) Networks

- Discrete (Subsidy? and Buys?); continuous (Harvest and Cost)


Figure 12: image

■ Option 1: discretization - possibly large errors large CPTs

- Option 2: finitely parameterized canonical families
- Continuous variable, discrete + continuous parents (e.g. Cost)
. Discrete variable. continuous parents (e.g. Buvs?)


## Continuous Child Variables

- Need one conditional density function for child variable given continuous parents, for each possible assignment to discrete parents
- Most common is the linear Gaussian model, for example

$$
\begin{aligned}
& P(\text { Cost }=c \mid \text { Harvest }=h, \text { Subsidy } ?=\text { true }) \\
& =\mathcal{N}\left(a_{t} h+b_{t}, \sigma_{t}\right)(c) \\
& =\frac{1}{\sigma_{t} \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{c-\left(a_{t} h+b_{t}\right)}{\sigma_{t}}\right)^{2}\right)
\end{aligned}
$$

- Mean Cost varies linearly with Harvest, variance is fixed
- Linear variation is unreasonable over the full range but works if the likely range of Harvest is narrow


## Continuous Child Variables



Figure 13: image

- All continuous network with linear Gaussian distributions $\rightarrow$ full joint distribution is a multivariate Gaussian
- Discrete + continuous linear Gaussian network is a conditional Gaussian network, that is, a multivariate Gaussian over all continuous variables for each combination of discrete values


## Discrete Variable with Continuous Parents

■ Probability of Buys? given Cost should be a "soft" threshold


Figure 14: image

- Probit distribution uses integral of Gaussian

$$
\Phi(x)=\int_{-\infty}^{x} \mathcal{N}(0,1)(x) d x
$$

## Why the Probit?

- It is sort of the right shape
- Can view as hard threshold whose location is subject to noise


Figure 15: image

## Discrete Variable Continued

- Sigmoid (or logit) distribution also used in neural networks:

$$
P(\text { Buys? }=\text { true } \mid \text { Cost }=c)=\frac{1}{1+\exp \left(-2 \frac{-c+\mu}{\sigma}\right)}
$$

■ Sigmoid has a similar shape to probit, but much longer tails:


Figure 16: image

## Inference Tasks

■ Simple queries: compute posterior marginal $P\left(X_{i} \mid E=e\right)$

- Conjunctive queries:

$$
P\left(X_{i}, X_{j} \mid E=e\right)=P\left(X_{i} \mid E=e\right) P\left(X_{j} \mid X_{i}, E=e\right)
$$

■ Optimal decisions: decision networks include utility information; probabilistic inference required for $P$ (outcome | action, evidence)

■ Value of information: which evidence to seek next?

- Sensitivity analysis: which probability values are most critical?
- Explanation: why do I need a new starter motor?


## Inference by Enumeration

- Slightly intelligent way to sum out variables from the joint without actually constructing its explicit representation
- Simple query on the burglary network:

$$
\begin{aligned}
& P(B \mid j, m)=\frac{P(B, j, m)}{P(j, m)} \\
& =\alpha P(B, j, m) \\
& =\alpha \sum_{e} \sum_{a} P(B, e, a, j, m) \\
& =\alpha \sum_{e} \sum_{a} P(B) P(e) P(a \mid B, e) P(j \mid a) P(m \mid a) \\
& =\alpha P(B) \sum_{e} P(e) \sum_{a} P(a \mid B, e) P(j \mid a) P(m \mid a)
\end{aligned}
$$

■ Recursive depth-first search enumeration: $\mathcal{O}(n)$ space, $\mathcal{O}\left(d^{n}\right)$ time

## Enumeration Algorithm

function Enumeration-Ask ( $X, e, b n$ )
$Q(X) \leftarrow$ a distribution over $X$, initially empty for each value $x_{i}$ of $X$ do extend $e$ with value $x_{i}$ for $X$ $Q\left(x_{i}\right) \leftarrow$ Enumerate-All $(\operatorname{Vars}[b n], e)$
return Normalize $(Q(X))$
function Enumerate-AlL(vars, e)
if Empty? (vars) then return 1.0
$Y \leftarrow \operatorname{First}($ vars $)$
if $Y$ has value $y$ in $e$ then
return $P(y \mid \operatorname{Pa}(Y) \times$ Enumerate- $\operatorname{All}(\operatorname{Rest}(v a r s), e)$
else
return $\sum_{y} P(y \mid P a(Y)) \times$
Enumerate-All(Rest(vars), $e_{y}$ )

## Evaluation Tree



Figure 17: image

- Enumeration is inefficient: repeated computation, for example, $P(j \mid a) P(m \mid a)$ is computed for each value of $e$


## Inference by Variable Elimination

- Variable elimination: carry out summations right-to-left, storing intermediate results (factors) to avoid recomputation

$$
\begin{aligned}
& P(B \mid j, m) \\
& =\alpha P(B) \sum_{e} P(e) \sum_{a} P(a \mid B, e) P(j \mid a) P(m \mid a) \\
& =\alpha P(B) \sum_{e} P(e) \sum_{a} P(a \mid B, e) P(j \mid a) f_{M}(a) \\
& =\alpha P(B) \sum_{e} P(e) \sum_{a} P(a \mid B, e) f_{J}(a) f_{M}(a) \\
& =\alpha P(B) \sum_{e} P(e) \sum_{a} f_{A}(a, b, e) f_{J}(a) f_{M}(a) \\
& =\alpha P(B) \sum_{e} P(e) f_{\bar{A} J M}(b, e) \\
& =\alpha P(B) f_{\bar{E} \bar{A} J M}(b) \\
& =\alpha f_{B}(b) f_{\bar{E} \bar{A} J M}(b)
\end{aligned}
$$

## Variable Elimination: Basic Operations

- Summing out a variable from a product of factors: move any constant factors outside the summation and add up submatrices in pointwise product of remaining factors

$$
\begin{aligned}
& \sum_{x} f_{1} \times \cdots \times f_{k} \\
& =f_{1} \times \cdots \times f_{i} \sum_{x} f_{i+1} \times \cdots \times f_{k} \\
& =f_{1} \times \cdots f_{i} \times f_{\bar{X}}
\end{aligned}
$$

assuming $f_{1}, \ldots, f_{i}$ do not depend on $X$

- Pointwise product of factors $f_{1}$ and $f_{2}$ : $f_{1}\left(x_{1}, \ldots, x_{j}, y_{1}, \ldots, y_{k}\right) \times f_{2}\left(y_{1}, \ldots, y_{k}, z_{1}, \ldots, z_{l}\right)=$ $f\left(x_{1}, \ldots, x_{j}, y_{1}, \ldots, y_{k}, z_{1}, \ldots, z_{l}\right)$

■ Example: $f_{1}(a, b) \times f_{2}(b, c)=f(a, b, c)$

## Variable Elimination Algorithm

function Elimination- $\operatorname{Ask}(X, e, b n)$
factors $\leftarrow$ []
vars $\leftarrow \operatorname{ReVERse}(\operatorname{Vars}([b n])$
for each var in vars do
factors $\leftarrow[$ Make-Factor $(v a r, e) \mid$ factors $]$
if var is a hidden variable then factors $\leftarrow$ Sum-Out(vars, factors)
return Normalize(Pointwise-Product(factors))

## Irrelevant Variables

■ Consider the query $P$ (JohnCalls $\mid$ Burglary = true) $P(J \mid b)=$ $\alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) P(J \mid a) \sum_{m} P(m \mid a)$

- The sum over $m$ is identically $1 ; M$ is irrelevant to the query
- Theorem: $Y$ is irrelevant unless $Y \in \operatorname{Ancestors}(\{X\} \cup E)$

■ Here, $X=$ JohnCalls, $E=\{$ Burglary $\}$, and Ancestors $(\{X\} \cup E)=\{$ Alarm, Earthquake $\}$ so MaryCalls is irrelevant

## Irrelevant Variables

■ Definition: moral graph of Bayes net - marry all parents and drop arrows

- Definition: $A$ is $m$-separated from $B$ by $C$ iff separated by $C$ in the moral graph
- Theorem: $Y$ is irrelevant if $m$-separated from $X$ by $E$
- Example: For $P($ JohnCalls $\mid$ Alarm $=$ true $)$, both Burglary and Earthquake are irrelevant


Figure 18: image

## Complexity of Exact Inference

- Singly connected networks (or polytrees):
- any two nodes are connected by at most one (undirected) path
- time and space cost of variable elimination are $\mathcal{O}\left(d^{k} n\right)$
- Multiply connected networks:
- can reduce to 3 SAT to exact inference $\Rightarrow$ NP-hard
- equivalent to counting 3SAT models $\Rightarrow \mathrm{P}$-complete


## Inference by Stochastic Simulation

- Basic idea:

1 Draw $N$ samples from a sampling distribution $S$
2 Compute an approximate posterior probability $\hat{P}$
3 Show this converges to the true probability $P$

- Outline
- Sampling from an empty network
- Rejection sampling: reject samples that disagree with the evidence
- Likelihood weighting (LW): use evidence to weight samples
- Markov chain Monte Carlo (MCMC): sample from a stochastic process whose stationary distribution is the true posterior


## Sampling from an Empty Network

function Prior-Sample(bn)
$x \leftarrow$ an event with $n$ elements
for $i=1$ to $n$ do
$x_{i} \leftarrow$ a random sample from $P\left(X_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)$ given the values of $\operatorname{Parents}\left(X_{i}\right)$ in $x$

## Example



Figure 19: image

## Example



Figure 20: image

## Example



Figure 21: image

## Example



Figure 22: image

## Example



Figure 23: image

## Example



Figure 24: image

## Example



Figure 25: image

## Sampling from an Empty Network Continued

■ Probability the Prior-Sample generates a particular event

$$
S_{P S}\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)=P\left(x_{1}, \ldots, x_{n}\right)
$$

that is, the true prior probability

- Let $N_{P S}\left(x_{i}, \ldots, x_{n}\right)$ be the number of samples generated for event $x_{1}, \ldots, x_{n}$, then we have

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \hat{P}\left(x_{1}, \ldots, x_{n}\right) & =\lim _{N \rightarrow \infty} \frac{N_{P S}\left(x_{1}, \ldots, x_{n}\right)}{N} \\
& =S_{P S}\left(x_{1}, \ldots, x_{n}\right) \\
& =P\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

- Shorthand: $\hat{P}\left(x_{1}, \ldots, x_{n}\right) \approx P\left(x_{1}, \ldots, x_{n}\right)$


## Rejection Sampling

- $\hat{P}(X \mid e)$ estimated from samples agreeing with $e$

■ Example: estimate $P($ Rain $\mid$ Sprinkler $=$ true $)$ using 100 samples: 27 samples have Sprinkler $=$ true and of these 8 have Rain $=$ true and 19 have Rain $=$ false.

- $\hat{P}($ Rain $\mid$ Sprinkler $=$ true $)=\operatorname{NormaLIze}(\langle 8,19\rangle)=$〈0.296, 0.704〉


# Analysis of Rejection Sampling 

$$
\begin{aligned}
\hat{P}(X \mid e) & =\alpha N_{P S}(X, e) \\
& =\frac{N_{P S}(X, e)}{N_{P S}(e)} \\
& \approx \frac{P(X, e)}{P(e)} \\
& =P(X \mid e)
\end{aligned}
$$

- Hence rejection sampling returns consistent posterior estimates
- Problem: hopelessly expensive if $P(e)$ is small
- $P(e)$ drops off exponentially with number of evidence variables


## Likelihood Weighting

- Idea: fix evidence variables, sample only nonevidence variables, and weight each sample by the likelihood it accords the evidence


## Likelihood Weighting Example



Figure 26: image

## Likelihood Weighting Example



Figure 27: image

## Likelihood Weighting Example



Figure 28: image

## Likelihood Weighting Example



Figure 29: image

## Likelihood Weighting Example



Figure 30: image

## Likelihood Weighting Analysis

- Sampling probability for Weighted-Sample is

$$
S_{W S}(z, e)=\prod_{i=1} I P\left(z_{i} \mid \operatorname{parents}\left(Z_{i}\right)\right)
$$

- Note: pays attention to evidence in ancestors only somewhere "in between" prior and posterior distribution

■ Weight for a given sample $z, e$ is
$w(z, e)=\prod_{i=1}^{m} P\left(e_{i} \mid\right.$ parents $\left.\left(E_{i}\right)\right)$

- Weighted sampling probability is

$$
\begin{aligned}
S_{W S} & (z, e) w(z, e) \\
& =\prod_{i=1}^{l} P\left(z_{i} \mid \text { parents }\left(Z_{i}\right)\right) \prod_{i=1} m P\left(e_{i} \mid \text { parents }\left(E_{i}\right)\right) \\
& =P(z, e) \text { (by standard global semantics of network) }
\end{aligned}
$$

- Hence likelihood weighting returns consistent estimates but performance still degrades with many evidence variables because few samples have nearlv all the total weight


## Approximate Inference Using MCMC

■ "State" of network is current assignment to all variables

- Generate next state by sampling one variable given Markov blanket

The Markov Chain

- With Sprinkler $=$ true, WetGrass $=$ true, there are four states:


Figure 31: image

## MCMC Example Continued

- Estimate $P($ Rain $\mid$ Sprinkler $=$ true, WetGrass $=$ true $)$
- Sample Cloudy or Rain given its Markov blanket, repeat; count the number of times Rain is true and false in the samples.

■ For example, visit 100 states: 31 have Rain = true, 69 have Rain $=$ false
$\hat{P}($ Rain $\mid$ Sprinkler $=$ true, WetGrass $=$ true $)=$ $\operatorname{Normalize}(\langle 31,69\rangle)=\langle 0.31,0.69\rangle$

■ Theorem: chain approaches stationary distribution: long-run fraction of time spent in each state is exactly proportional to its posterior probability.

## Markov Blanket Sampling

■ Markov blanket of Cloudy is Sprinkler and Rain

- Markov blanket of Rain is Cloudy, Sprinkler, and WetGrass
- Probability given the Markov blanket is calculated as follows:

$$
P\left(x_{i}^{\prime} \mid m b\left(X_{i}\right)\right)=P\left(x_{i}^{\prime} \mid \text { parents }\left(X_{i}\right)\right) \prod_{z_{j} \in \operatorname{Children}\left(X_{i}\right)} P\left(z_{j} \mid \operatorname{parents}\left(Z_{j}\right)\right.
$$

■ Easily implemented in message-passing parallel systems
■ Main computational problems:
1 Difficult to tell if convergence has been achieved
2 Can be wasteful if Markov blanket is large: $P\left(X_{i} \mid m b\left(X_{i}\right)\right)$ will not change much (law of large numbers)

## Summary

- Bayes nets provide a natural representation for (causally induced) conditional independence
- Topology + CPTs $=$ compact representation for joint distribution
- Generally easy for (non)experts to construct
- Canonical distributions (e.g. noisy-OR) = compact representation of CPTs
- Continuous variables $\rightarrow$ parameterized distributions
- Exact inference by variable elimination: NP-hard in general
- Approximate inference methods: likelihood weighting and Markov chain Monte-Carlo sampling

