
Semaphores
CSC 343, Operating Systems



Topics covered in this lecture

Condition variables
Semaphores
Signaling through condition variables and semaphores
Concurrency bugs

This slide deck covers chapters 30, 31, 32 in OSTEP.



Condition variables (CV)

In concurrent programming, a common scenario is one thread
waiting for another thread to complete an action.

1 bool done = false;
2
3 /* called in the child to signal termination */
4 void thr_exit() {
5 done = true;
6 }
7 /* called in the parent to wait for a child thread */
8 void thr_join() {
9 while (!done);
10 }



Condition variables (CV)

Locks enable mutual exclusion of a shared region.
Unfortunately they are oblivious to ordering

Waiting and signaling (i.e., T2 waits until T1 completes a given
task) could be implemented by spinning until the value changes

But spinning is incredibly inefficient

New synchronization primitive: condition variables



Condition variables (CV)

Locks enable mutual exclusion of a shared region.
Unfortunately they are oblivious to ordering

Waiting and signaling (i.e., T2 waits until T1 completes a given
task) could be implemented by spinning until the value changes

But spinning is incredibly inefficient

New synchronization primitive: condition variables



Condition variables (CV)

Locks enable mutual exclusion of a shared region.
Unfortunately they are oblivious to ordering

Waiting and signaling (i.e., T2 waits until T1 completes a given
task) could be implemented by spinning until the value changes

But spinning is incredibly inefficient

New synchronization primitive: condition variables



Condition variables (CV)

A CV allows:
A thread to wait for a condition
Another thread signals the waiting thread

Implement CV using queues

API: wait, signal or broadcast
wait: wait until a condition is satisfied
signal: wake up one waiting thread
broadcast: wake up all waiting threads

On Linux, pthreads provides CV implementation



Condition variables (CV)

A CV allows:
A thread to wait for a condition
Another thread signals the waiting thread

Implement CV using queues

API: wait, signal or broadcast
wait: wait until a condition is satisfied
signal: wake up one waiting thread
broadcast: wake up all waiting threads

On Linux, pthreads provides CV implementation



Signal parent that child has exited
1 bool done = false;
2 pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;
3 pthread_cond_t c = PTHREAD_COND_INITIALIZER;
4 /* called in the child to signal termination */
5 void thr_exit() {
6 pthread_mutex_lock(&m);
7 done = true;
8 pthread_cond_signal(&c);
9 pthread_mutex_unlock(&m);
10 }
11 /* called in the parent to wait for a child thread */
12 void thr_join() {
13 pthread_mutex_lock(&m);
14 while (!done)
15 pthread_cond_wait(&c, &m);
16 pthread_mutex_unlock(&m);
17 }



Signal parent that child has exited (2)

pthread_cond_wait(pthread_cond_t *c,
pthread_mutex_t *m)

Assume mutex m is held; atomically unlock mutex when waiting,
retake it when waking up

Question: Why do we need to check a condition before
sleeping?

Thread may have already exited, i.e., no need to wait
Principle: Check the condition before sleeping

Question: Why can’t we use if when waiting?

Multiple threads could be woken up, racing for done flag
Principle: while instead of if when waiting



Signal parent that child has exited (2)

pthread_cond_wait(pthread_cond_t *c,
pthread_mutex_t *m)

Assume mutex m is held; atomically unlock mutex when waiting,
retake it when waking up

Question: Why do we need to check a condition before
sleeping?

Thread may have already exited, i.e., no need to wait
Principle: Check the condition before sleeping

Question: Why can’t we use if when waiting?

Multiple threads could be woken up, racing for done flag
Principle: while instead of if when waiting



Signal parent that child has exited (2)

pthread_cond_wait(pthread_cond_t *c,
pthread_mutex_t *m)

Assume mutex m is held; atomically unlock mutex when waiting,
retake it when waking up

Question: Why do we need to check a condition before
sleeping?

Thread may have already exited, i.e., no need to wait
Principle: Check the condition before sleeping

Question: Why can’t we use if when waiting?

Multiple threads could be woken up, racing for done flag
Principle: while instead of if when waiting



Signal parent that child has exited (2)

pthread_cond_wait(pthread_cond_t *c,
pthread_mutex_t *m)

Assume mutex m is held; atomically unlock mutex when waiting,
retake it when waking up

Question: Why do we need to check a condition before
sleeping?

Thread may have already exited, i.e., no need to wait
Principle: Check the condition before sleeping

Question: Why can’t we use if when waiting?

Multiple threads could be woken up, racing for done flag
Principle: while instead of if when waiting



Signal parent that child has exited (3)

Question: Why do we need to proctect done with mutex m?

Mutex m allows one thread to access done for protecting
against missed updates

Parent reads done == false but is interrupted
Child sets done = true and signals but no one is waiting
Parent continues and goes to sleep (forever)

Lock is therefore required for wait/signal synchronization



Signal parent that child has exited (3)

Question: Why do we need to proctect done with mutex m?

Mutex m allows one thread to access done for protecting
against missed updates

Parent reads done == false but is interrupted
Child sets done = true and signals but no one is waiting
Parent continues and goes to sleep (forever)

Lock is therefore required for wait/signal synchronization



Producer/consumer synchronization

Producer/consumer is a common programming pattern
For example: map (producers) / reduce (consumer)
For example: a concurrent database (consumers) handling
parallel requests from clients (producers)

Clients produce new requests (encoded in a queue)
Handlers consume these requests (popping from the queue)

Strategy: use CV to synchronize
Make producers wait if buffer is full
Make consumers wait if buffer is empty (nothing to consume)



Producer/consumer synchronization

Producer/consumer is a common programming pattern
For example: map (producers) / reduce (consumer)
For example: a concurrent database (consumers) handling
parallel requests from clients (producers)

Clients produce new requests (encoded in a queue)
Handlers consume these requests (popping from the queue)

Strategy: use CV to synchronize
Make producers wait if buffer is full
Make consumers wait if buffer is empty (nothing to consume)



Condition variables

Programmer must keep state, orthogonal to locks
CV enables access to critical section with a thread wait queue
Always wait/signal while holding lock
Whenever thread wakes, recheck state



Semaphore

A semaphore extends a CV with an integer as internal state
int sem_init(sem_t *sem, unsigned int value):
creates a new semaphore with value slots
int sem_wait(sem_t *sem): waits until the semaphore has
at least one slot, decrements the number of slots
int sem_post(sem_t *sem): increments the semaphore
(and wakes one waiting thread)
int sem_destroy(sem_t *sem): destroys the semaphore
and releases any waiting threads



Concurrent programming: producer
consumer

One or more producers create items, store them in buffer
One or more consumers process items from buffer

Need synchronization for buffer
Want concurrent production and consumption
Use as many cores as available
Minimize access time to shared data structure



Concurrent programming: producer
consumer

One or more producers create items, store them in buffer
One or more consumers process items from buffer

Need synchronization for buffer
Want concurrent production and consumption
Use as many cores as available
Minimize access time to shared data structure



Concurrent programming
1 void *producer(void *arg) {
2 unsigned int max = (unsigned int)arg;
3 for (unsigned int i = 0; i < max; i++) {
4 put(i); // store in shared buffer
5 }
6 return NULL;
7 }
8 void *consumer(void *arg) {
9 unsigned int max = (unsigned int)arg;
10 for (unsigned int i = 0; i < max; i++) {
11 printf("%d\n", get(i)); // recv from buffer
12 }
13 return NULL;
14 }
pthread_t p, c;
pthread_create(&p, NULL, &producer, (void*)NUMITEMS);
pthread_create(&c, NULL, &consumer, (void*)NUMITEMS);



Concurrent programming:
1 unsigned int buffer[BUFSIZE] = { 0 };
2 unsigned int cpos = 0, ppos = 0;
3
4 void put(unsigned int val) {
5 buffer[ppos] = val;
6 ppos = (ppos + 1) % BUFSIZE;
7 }
8
9 unsigned int get() {
10 unsigned long val = buffer[cpos];
11 cpos = (cpos + 1) % BUFSIZE;
12 return val;
13 }

What are the issues in this code?

Producers may overwrite unconsumed entries
Consumers may consume uninitialized or stale entries



Concurrent programming:
1 unsigned int buffer[BUFSIZE] = { 0 };
2 unsigned int cpos = 0, ppos = 0;
3
4 void put(unsigned int val) {
5 buffer[ppos] = val;
6 ppos = (ppos + 1) % BUFSIZE;
7 }
8
9 unsigned int get() {
10 unsigned long val = buffer[cpos];
11 cpos = (cpos + 1) % BUFSIZE;
12 return val;
13 }

What are the issues in this code?

Producers may overwrite unconsumed entries
Consumers may consume uninitialized or stale entries



Producer/consumer: use semaphores!

sem_t csem, psem;

/* BUFSIZE items are available for producer to create */
sem_init(&psem, 0, BUFSIZE);

/* 0 items are available for consumer */
sem_init(&csem, 0, 0);



Producer: semaphores

1 void put(unsigned int val) {
2 /* we wait until there is buffer space available */
3 sem_wait(&psem);
4
5 /* store element in buffer */
6 buffer[ppos] = val;
7 ppos = (ppos + 1) % BUFSIZE;
8
9 /* notify consumer that data is available */
10 sem_post(&csem);
11 }



Consumer: semaphores

1 unsigned int get() {
2 /* wait until data is produced */
3 sem_wait(&csem);
4
5 /* consumer entry */
6 unsigned long val = buffer[cpos];
7 cpos = (cpos + 1) % BUFSIZE;
8
9 /* notify producer that a space has freed up */
10 sem_post(&psem);
11 return val;
12 }



Producer/consumer: remaining issues?

We now synchronize between consumers and producers
Producer waits until buffer space is available
Consumer waits until data is ready

How would you handle multiple producers/consumers?
Currently no synchronization between producers (or consumers)



Producer/consumer: remaining issues?

We now synchronize between consumers and producers
Producer waits until buffer space is available
Consumer waits until data is ready

How would you handle multiple producers/consumers?
Currently no synchronization between producers (or consumers)



Multiple producers: use locking!
/* mutex handling mutual exclusive access to ppos */
1 pthread_mutex_t pmutex = PTHREAD_MUTEX_INITIALIZER;
2
3 void put(unsigned int val) {
4 unsigned int mypos;
5 /* we wait until there is buffer space available */
6 sem_wait(&psem);
7 /* ppos is shared between all producers */
8 pthread_mutex_lock(&pmutex);
9 mypos = ppos;
10 ppos = (ppos + 1) % BUFSIZE;
11 /* store information in buffer */
12 buffer[mypos] = val;
13 pthread_mutex_unlock(&pmutex);
14 sem_post(&csem);
15 }



Semaphores/spin locks/CVs are
interchangeable

Each is implementable through a combination of the others
Depending on the use-case one is faster than the other

How often is the critical section executed?
How many threads compete for a critical section?
How long is the lock taken?



Implementing a mutex with a semaphore

1 sem_t sem;
2 sem_init(&sem, 1);
3
4 sem_wait(&sem);
5 ... // critical section
6 sem_post(&sem);



Implementing a semaphore with CV/locks

1 typedef struct {
2 int value; // sem value
3 pthread_mutex_t lock; // access to sem
4 pthread_cond_t cond; // wait queue
5 } sem_t;
6
7 void sem_init(sem_t *s, int val) {
8 s->value = val;
9 pthread_mutex_init(&(s->lock), NULL);
10 pthread_cond_init(&(s->cond), NULL);
11 }



Implementing a semaphore with CV/locks

1 void sem_wait(sem_t *s) {
2 pthread_mutex_lock(&(s->lock));
3 while (s->value <= 0)
4 pthread_cond_wait(&(s->cond), &(s->lock));
5 s->value--;
6 pthread_mutex_unlock(&(s->lock));
7 }
8
9 void sem_post(sem_t *s) {
10 pthread_mutex_lock(&(s->lock));
11 s->value++;
12 pthread_cond_signal(&(s->cond));
13 pthread_mutex_unlock(&(s->lock));
14 }



Reader/writer locks

A single (exclusive) writer, multiple (N) concurrent readers
Implement using two semaphores: lock for the data structure,
wlock for the writer

Both semaphores initialized with (1)
Writer only waits/posts on wlock when acquiring/releasing
Reader waits on lock, increments/decrements reader count
If number of readers==0, must wait/post on wlock



Reader/writer locks
1 void rwlock_acquire_readlock(rwlock_t *rw) {
2 sem_wait(&rw->lock);
3 rw->readers++;
4 if (rw->readers == 1)
5 sem_wait(&rw->wlock); // first r, also grab wlock
6 sem_post(&rw->lock);
7 }
8
9 void rwlock_release_readlock(rwlock_t *rw) {
10 sem_wait(&rw->lock);
11 rw->readers--;
13 if (rw->readers == 0)
14 sem_post(&rw->wlock); // last r, also release wlock
15 sem_post(&rw->lock);
16 }



Bugs in concurrent programs

Writing concurrent programs is hard!
Atomicity bug: concurrent, unsynchronized modification
(lock!)
Order-violating bug: data is accessed in wrong order (use
CV!)
Deadlock: program no longer makes progress (locking order)



Atomicity bugs
One thread checks value and prints it while another thread
concurrently modifies it.

1 int shared = 24;
2
3 void T1() {
4 if (shared > 23) {
5 printf("Shared is >23: %d\n", shared);
6 }
7 }
8 void T2() {
9 shared = 12;
10 }

T2 may modify shared between if check and printf in T1.
Fix: use a common mutex between both threads when
accessing the shared resource.



Atomicity bugs
One thread checks value and prints it while another thread
concurrently modifies it.

1 int shared = 24;
2
3 void T1() {
4 if (shared > 23) {
5 printf("Shared is >23: %d\n", shared);
6 }
7 }
8 void T2() {
9 shared = 12;
10 }

T2 may modify shared between if check and printf in T1.
Fix: use a common mutex between both threads when
accessing the shared resource.



Order-violating bug

One thread assumes the other has already updated a value.

Thread 1::
void init() {

mThread = PR_CreateThread(mMain, ...);
mThread->State = ...;

}

Thread 2::
void mMain(...) {

mState = mThread->State;
}

Thread 2 may run before mThread is assigned in T1.
Fix: use a CV to signal that mThread has been initialized.



Order-violating bug

One thread assumes the other has already updated a value.

Thread 1::
void init() {

mThread = PR_CreateThread(mMain, ...);
mThread->State = ...;

}

Thread 2::
void mMain(...) {

mState = mThread->State;
}

Thread 2 may run before mThread is assigned in T1.
Fix: use a CV to signal that mThread has been initialized.



Deadlock

Locks are taken in conflicting order.

void T1() {
lock(L1);
lock(L2);

}

void T2() {
lock(L2);
lock(L1);

}

Threads 1/2 may be stuck after taking the first lock, program
makes no more progress
Fix: acquire locks in increasing (global) order.



Deadlock

Locks are taken in conflicting order.

void T1() {
lock(L1);
lock(L2);

}

void T2() {
lock(L2);
lock(L1);

}

Threads 1/2 may be stuck after taking the first lock, program
makes no more progress
Fix: acquire locks in increasing (global) order.



Summary

Spin lock, CV, and semaphore synchronize multiple threads
Spin lock: atomic access, no ordering, spinning
Condition variable: atomic access, queue, OS primitive
Semaphore: shared access to critical section with (int) state

All three primitives are equally powerful
Each primitive can be used to implement both other primitives
Performance may differ!

Synchronization is challenging and may introduce different
types of bugs such as atomicity violation, order violation, or
deadlocks.


