
Virtual Memory
(Segmentation)

CSC 343, Operating Systems

Topics covered in this lecture

Abstraction: address space
Policy: isolation
Mechanism: address translation
Mechanism: heap management

This slide deck covers chapters 13–17 in OSTEP.

Virtualization

Goal: isolate processes (and their faults) from each other.

Virtualization enables isolation, but isolation requires separation. A
process must be prohibited to access memory/registers of another
process.

Step 1: Virtual CPU provides illusion of private CPU registers
(mechanisms and policy)
Step 2: Virtual RAM provides illusion of private memory

Virtualization

Goal: isolate processes (and their faults) from each other.

Virtualization enables isolation, but isolation requires separation. A
process must be prohibited to access memory/registers of another
process.

Step 1: Virtual CPU provides illusion of private CPU registers
(mechanisms and policy)
Step 2: Virtual RAM provides illusion of private memory

History: uniprogramming

Initially the OS was a set of library routines
Issue 1: only one task at a time
Issue 2: no isolation between OS / task

Task

OS

2n − 1

0

Stack

Heap
Code

Goals for multiprogramming

Transparency: processes are unaware of memory sharing and
the existence of other processes
Protection: OS/other processes are isolated from process
(read/write)
Efficiency (1): do not waste resources (e.g., fragmentation)
Efficiency (2): run as close to the metal as much as possible
Sharing: processes may share part of address space

Abstraction: address space

Address space: each process has a set of addresses that map to
data (i.e., a map from pointers to bytes)

Static: code and global variables
Dynamic: stack, heap

Why do we need dynamic memory?

The amount of required memory may be task dependent
Input size may be unknown at compile time
Conservative pre-allocation would be wasteful
Recursive functions (invocation frames)

Abstraction: address space

Address space: each process has a set of addresses that map to
data (i.e., a map from pointers to bytes)

Static: code and global variables
Dynamic: stack, heap

Why do we need dynamic memory?

The amount of required memory may be task dependent
Input size may be unknown at compile time
Conservative pre-allocation would be wasteful
Recursive functions (invocation frames)

Abstraction: address space

Address space: each process has a set of addresses that map to
data (i.e., a map from pointers to bytes)

Static: code and global variables
Dynamic: stack, heap

Why do we need dynamic memory?

The amount of required memory may be task dependent
Input size may be unknown at compile time
Conservative pre-allocation would be wasteful
Recursive functions (invocation frames)

Dynamic data structure: stack

Data is returned in reverse order from insertion
push(1); push(2); push(3);
pop()->3; pop()->2; pop()->1;

Memory is freed in reverse order from allocation
a=alloc(20); b=alloc(10);
free(b); free(a);

Straight-forward implementation: bump or decrement a pointer
Advantage: no fragmentation, no metadata
Note: deallocations must be in reverse order

Dynamic data structure: stack

Data is returned in reverse order from insertion
push(1); push(2); push(3);
pop()->3; pop()->2; pop()->1;

Memory is freed in reverse order from allocation
a=alloc(20); b=alloc(10);
free(b); free(a);

Straight-forward implementation: bump or decrement a pointer
Advantage: no fragmentation, no metadata
Note: deallocations must be in reverse order

Excursion: procedure invocation frames
Calling a function allocates an invocation frame to store all local
variables and the necessary context to return to the callee.

int called(int a, int b) {
int tmp = a * b;
return tmp / 42;

}
void main(int argc, char *argv[]) {

int tmp = called(argc, argc);
}

What data is stored in the invocation frame of called?

Slot for int tmp
Slots for the parameters a, b
Slot for the return code pointer
Order in most ABIs: b, a, RIP, tmp

The compiler creates the necessary code, according to the ABI.

Excursion: procedure invocation frames
Calling a function allocates an invocation frame to store all local
variables and the necessary context to return to the callee.

int called(int a, int b) {
int tmp = a * b;
return tmp / 42;

}
void main(int argc, char *argv[]) {

int tmp = called(argc, argc);
}

What data is stored in the invocation frame of called?

Slot for int tmp
Slots for the parameters a, b
Slot for the return code pointer
Order in most ABIs: b, a, RIP, tmp

The compiler creates the necessary code, according to the ABI.

Excursion: procedure invocation frames
Calling a function allocates an invocation frame to store all local
variables and the necessary context to return to the callee.

int called(int a, int b) {
int tmp = a * b;
return tmp / 42;

}
void main(int argc, char *argv[]) {

int tmp = called(argc, argc);
}

What data is stored in the invocation frame of called?

Slot for int tmp
Slots for the parameters a, b
Slot for the return code pointer
Order in most ABIs: b, a, RIP, tmp

The compiler creates the necessary code, according to the ABI.

Stack for procedure invocation frames

The stack enables simple storage of function invocation frames
Stores calling context and sequence of active parent frames
Memory allocated in function prologue, freed when returned

What happens to the data when function returns?

Data from previous function lingers, overwritten when the next
function initializes its data

Stack for procedure invocation frames

The stack enables simple storage of function invocation frames
Stores calling context and sequence of active parent frames
Memory allocated in function prologue, freed when returned

What happens to the data when function returns?

Data from previous function lingers, overwritten when the next
function initializes its data

Stack for procedure invocation frames

The stack enables simple storage of function invocation frames
Stores calling context and sequence of active parent frames
Memory allocated in function prologue, freed when returned

What happens to the data when function returns?

Data from previous function lingers, overwritten when the next
function initializes its data

Dynamic data structure: heap

A heap of randomly allocated memory objects with statically
unknown size and statically unknown allocation patterns. The size
and lifetime of each allocated object is unknown.

API: alloc creates an object, free indicates it is no longer used.

How would you manage such a data structure?

Dynamic data structure: heap

A heap of randomly allocated memory objects with statically
unknown size and statically unknown allocation patterns. The size
and lifetime of each allocated object is unknown.

API: alloc creates an object, free indicates it is no longer used.

How would you manage such a data structure?

Heap: straw man implementation

char storage[4096], *heap = storage;
char *alloc(size_t len) {

char *tmp = heap;
heap = heap + len;
return tmp;

}

void free(char *ptr) {}

Advantage: simple
Disadvantage: no reuse, will run out of memory

Heap: free list

Idea: abstract heap into list of free blocks.

Keep track of free space, program handles allocated space
Keep a list of all available memory objects and their size

Implementation:

alloc: take a free block, split, put remainder back on free list
free: add block to free list

What are advantages/disadvantages with this implementation?

Heap: free list

Idea: abstract heap into list of free blocks.

Keep track of free space, program handles allocated space
Keep a list of all available memory objects and their size

Implementation:

alloc: take a free block, split, put remainder back on free list
free: add block to free list

What are advantages/disadvantages with this implementation?

Heap: better implementations

Allocation: find a fitting object (first, best, worst fit)
first fit: find the first object in the list and split it
best fit: find the object that is closest to the size
worst fit: find the largest object and split it

Free: merge adjacent blocks
if the adjacent region is free, merge the two blocks

Heap: better implementations

Allocation: find a fitting object (first, best, worst fit)
first fit: find the first object in the list and split it
best fit: find the object that is closest to the size
worst fit: find the largest object and split it

Free: merge adjacent blocks
if the adjacent region is free, merge the two blocks

Heap and OS interaction

The OS hands the process a large chunk of memory to store
heap objects
A runtime library (the libc) manages this chunk
Memory allocators aim for performance, reliability, or security

Quiz: where is it?

int g;
int main(int argc, char *argv[]) {

int foo;
char *c = (char*)malloc(argc*sizeof(int));
free(c);

}

Possible storage locations: stack, heap, globals, code

Stack: argc, argv, foo, c
Heap: *c
Globals: g
Code: main

Quiz: where is it?

int g;
int main(int argc, char *argv[]) {

int foo;
char *c = (char*)malloc(argc*sizeof(int));
free(c);

}

Possible storage locations: stack, heap, globals, code

Stack: argc, argv, foo, c
Heap: *c
Globals: g
Code: main

Virtualizing memory

Challenge: how can we run multiple programs in parallel?
Addresses are hard coded in code
Static allocation? What about executing the same task twice?

Possible sharing mechanisms:
Time sharing
Static relocation/allocation
Base (+ bounds)
Segmentation
Virtual memory

Virtualizing memory: time sharing

Reuse idea from CPU virtualization
OS virtualizes CPU by storing register state to memory
Could virtualize memory by storing state to disk

Disadvantage: incredibly bad performance due to I/O latency
Better: space sharing (divide memory among processes)

Virtualizing memory: static relocation

0x10: mov -0x4(%rbp),%edx
0x13: mov -0x8(%rbp),%eax
0x16: add %edx,%eax
0x18: call 60 <printf@plt>

OS relocates text segment (code area) when new task is started:

Task 1 # Task 2
0x1010: mov -0x4(%rbp),%edx 0x5010: mov -0x4(%rbp),%edx
0x1013: mov -0x8(%rbp),%eax 0x5013: mov -0x8(%rbp),%eax
0x1016: add %edx,%eax 0x5016: add %edx,%eax
0x1018: call 1060 <printf> 0x5018: call 5060 <printf>

Virtualizing memory: static relocation

0x10: mov -0x4(%rbp),%edx
0x13: mov -0x8(%rbp),%eax
0x16: add %edx,%eax
0x18: call 60 <printf@plt>

OS relocates text segment (code area) when new task is started:

Task 1 # Task 2
0x1010: mov -0x4(%rbp),%edx 0x5010: mov -0x4(%rbp),%edx
0x1013: mov -0x8(%rbp),%eax 0x5013: mov -0x8(%rbp),%eax
0x1016: add %edx,%eax 0x5016: add %edx,%eax
0x1018: call 1060 <printf> 0x5018: call 5060 <printf>

Virtualizing memory: static relocation

When loading a program, relocate it to an assigned area
Carefully adjusts all pointers in code and globals, set the stack
pointer to the assigned stack

There is only one address space, no physical/virtual separation
Issue 1: no separation between processes (no integrity or
confidentiality)
Issue 2: fragmentation, address space remains fixed as long as
program runs
Issue 3: programs have to be adjusted when loaded (e.g.,
target of a jump will be at different addresses depending on the
location in the address space)

Virtualizing memory: static relocation

When loading a program, relocate it to an assigned area
Carefully adjusts all pointers in code and globals, set the stack
pointer to the assigned stack

There is only one address space, no physical/virtual separation
Issue 1: no separation between processes (no integrity or
confidentiality)
Issue 2: fragmentation, address space remains fixed as long as
program runs
Issue 3: programs have to be adjusted when loaded (e.g.,
target of a jump will be at different addresses depending on the
location in the address space)

Challenge: illusion of private address space

How can the OS provide the illusion of a private address
space to each process?

Virtualizing memory: dynamic relocation

What if, instead of relocating the memory accesses ahead of
time, the hardware could help us relocate accesses just-in-time?
In dynamic relocation, a hardware mechanism translates each
memory address from the program’s viewpoint to the
hardware’s viewpoint.

Interposition: the hardware will intercept each memory access and
dynamically and transparently translate for the program from virtual
addresses (VA) to physical addresses (PA). The OS manages the
book keeping of which physical addresses are associated with what
processes.

Indirection

We can solve any problem by introducing an extra level of
indirection. [Except for the problem of too many layers of
indirection.]

(Andrew Koenig attributed the quote to Butler Lampson who
attributed it to David J. Wheeler, adding another layer of
indirection.)

MMU: Memory Management Unit

CPU MMU
Memory

Process runs on the CPU
OS controls CPU and MMU
MMU translates virtual addresses (logical addresses) to
physical addresses

Privilege modes

How do you keep the process from modifying the MMU
configuration?

Separation: OS runs at higher privileges than process
OS privileges include special instructions for MMU config
Switch from user-space (process) to kernel space through
system call (special call instruction)
OS returns to unprivileged user mode (with special return)
Exceptions in user space (e.g., illegal memory access, division
by 0) switch to privileged mode, OS handles the exception

Privilege modes

How do you keep the process from modifying the MMU
configuration?

Separation: OS runs at higher privileges than process
OS privileges include special instructions for MMU config
Switch from user-space (process) to kernel space through
system call (special call instruction)
OS returns to unprivileged user mode (with special return)
Exceptions in user space (e.g., illegal memory access, division
by 0) switch to privileged mode, OS handles the exception

A simple MMU: base register

Idea: translate virtual to physical addresses by adding offset.
Store offset in special register (OS controlled, used by MMU).
Each process has a different offset in their base register

A simple MMU: base register

0 KiB

4 KiB

8 KiB

12 KiB

16 KiB

20 KiB

P2

P1
base register

A simple MMU: base register

Set base register to 0x1000 for P1
Load of address 0x100v becomes 0x1100p
Set base register to 0x3000 for P2
Load of address 0x52v becomes 0x3052p

A simple MMU: base register

Is this design free from security issues?
Are processes P1 and P2 truly separated?

No! P1 can access the memory of P2 as the base register is simply
added. In the previous example, with base=0x1000, accessing
address 0x2000v will access the first byte of memory of P2 while P1
is executing!

A simple MMU: base register

Is this design free from security issues?
Are processes P1 and P2 truly separated?

No! P1 can access the memory of P2 as the base register is simply
added. In the previous example, with base=0x1000, accessing
address 0x2000v will access the first byte of memory of P2 while P1
is executing!

A simple MMU: base and bounds

Simple solution: base and bounds
Base register sets minimum address
Bounds register sets (virtual) limit of the address space, highest
physical address that is accessible becomes base+bounds

New concept: access check

if (addr < bounds) {
return *(base+addr);

} else {
throw new SegFaultException();

}

Note: bounds can either store the size of the address space or the
upper memory address; this is an implementation choice.

A simple MMU: base and bounds

Achieves security (isolation property is satisfied)
Achieves performance (translation and check are cheap)
What’s the remaining problem?

All memory must be continuously allocated
Waste of physical memory (all must be allocated)
No (easy) sharing between processes

A simple MMU: base and bounds

Achieves security (isolation property is satisfied)
Achieves performance (translation and check are cheap)
What’s the remaining problem?

All memory must be continuously allocated
Waste of physical memory (all must be allocated)
No (easy) sharing between processes

A simple MMU: segmentation

Instead of a single base/bounds register pair, have one pair per
memory area:

Code Segment (CS on x86, default for instructions)
Data Segment (DS on x86, default for data accesses)
Stack Segment (SS on x86, default for push/pop)
Extra Segments (ES, FS, and GS on x86, for anything else)

Allow a process to have several regions of continuous memory
mapped from a virtual address space to a physical address space.

Note that hardware also allows to override default segment registers,
allowing the programmer to specify which segment should be used.
E.g., loading data from the code segment.

Summary

OS manages access to constrained resources
Principle: limited direct execution (bare metal when possible,
intercept when needed)
CPU: time sharing between processes (low switching cost)
Memory: space sharing (disk I/O is slow, so time sharing is
expensive)

Programs use dynamic data
Stack: program invocation frames
Heap: unordered data, managed by user-space library (allocator)

Time sharing: one process uses all of memory
Base register: share space, calculate address through offset
Base + bounds: share space, limit process’ address space
Segments: movable segments, virtual offsets to segment base

