Security
CSC 343, Operating Systems

Security

9dUuodj]sisiad

Aousanouo)

uol1eZ||eNMIA

Topics covered in this lecture

m Software testing

m Fuzzing

m Sanitization

m Data Execution Prevention

m Address Space Layout Randomization
m Stack canaries

m Control-Flow Integrity (CFI)

This slide deck covers chapters 5.3 and 6.4 in SS3P.

https://nebelwelt.net/SS3P/softsec.pdf

Why testing?

Testing is the process of executing code to find errors.

An error is a deviation between observed behavior and specified
behavior, i.e., a violation of the underlying specification:

m Functional requirements (features a, b, c)
m Operational requirements (performance, usability)
m Security requirements?

Limitations of testing

Testing can only show the presence of bugs, never their
absence. (Edsger W. Dijkstra)

A successful test finds a deviation. Testing is a form of dynamic
analysis. Code is executed, the testing environment observes the
behavior of the code, detecting violations.

m Key advantage: reproducible, generally testing gives you the
concrete input for failed test cases.

m Key disadvantage: complete testing of all
control-flow/data-flow paths reduces to the halting problem, in
practice, testing is hindered due to state explosion.

Forms of testing

m Manual testing
m Fuzz testing
m Symbolic and concolic testing

We focus on security testing or testing to find security bugs, that is,
bugs that are reachable through attacker-controlled inputs.

Recommended reading: A Few Billion Lines of Code Later: Using
Static Analysis to Find Bugs in the Real World

https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext
https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext

Coverage as completeness metric

Intuition: A software flaw is only detected if the flawed
statement is executed. Effectiveness of test suite therefore
depends on how many statements are executed.

How to measure code coverage?

Several approaches exist, all rely on instrumentation:

m gcov: https://gcc.gnu.org/onlinedocs/gcc/Geov.html
m SanitizerCoverage:
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html

Sampling may reduce collection cost at slight loss of precision.

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html

Fuzzing

Fuzz testing (fuzzing) is an automated software testing technique.
Key idea: execute the target program with an input and check if it
crashes. The fuzzing engine automatically generates new inputs
based on some criteria:

m Random mutation
m Leveraging input structure
m Leveraging program structure

The inputs are then run on the test program and, if it crashes, a
crash report is generated.

Fuzzing effectiveness

m Fuzzing finds bugs effectively (CVEs—unique bug numbers)
m Proactive defense during software development/testing

m Preparing offense, as part of exploit development

Fuzz input generation

Fuzzers generate new input based on generations or mutations.

m Generation-based input generation produces new input seeds
in each round, independent from each other.

m Mutation-based input generation leverages existing inputs
and modifies them based on feedback from previous rounds.

Fuzz input structure awareness

Programs accept some form of input/output. Generally, the
input/output is structured and follows some form of protocol.

m Dumb fuzzing is unaware of the underlying structure.

m Smart fuzzing is aware of the protocol and modifies the input
accordingly.

Example: a checksum at the end of the input. A dumb fuzzer will
likely fail the checksum.

Fuzz program structure awareness

Input is processed by the program, based on the program structure
(past executions), input can be adapted to trigger new conditions.

m White-box fuzzing leverages (expensive) semantic program
analysis to mutate input; often does not scale

m Grey-box leverages program instrumentation based on
previous inputs; light runtime cost, scales to large programs

m Black-box fuzzing is unaware of the program structure; often
cannot explore beyond simple/early functionality

Fuzzer challenges: coverage wall

After certain iterations the fuzzer no longer makes progress
Hard to satisfy checks

Chains of checks

Leaps in input changes

Fuzzer challenges: coverage wall

Bypassing the coverage wall is hard, the following lists some
approaches:

Better input (seeds) can mitigate the coverage wall

Fuzz individual components by writing fuzzer stubs (LibFuzzer)
Better mutation operators (help the fuzzer guide exploration)

Stateful fuzzing (teach fuzzer about different program states)
Grammar-aware fuzzing (teach fuzzer about input grammar)

Fault detection

m How do we detect program faults?
m Test cases detect bugs through

m Assertions (assert(var != 0x23 &% "var has illegal
value") ;) detect violations

Segmentation faults

Division by zero traps

Uncaught exceptions

Mitigations triggering termination

m How can you increase the chances of detecting a bug?

Sanitization

Sanitizers enforce a given policy, detect bugs earlier and increase
effectiveness of testing. Most sanitizers rely on a combination of
static analysis, instrumentation, and dynamic analysis.

m The program is analyzed during compilation (for example, to
learn properties such as type graphs or to enable optimizations)

m The program is instrumented, often to record metadata at
certain places and to enforce metadata checks at other places.

m At runtime, the instrumentation constantly verifies that the
policy is not violated.

What policies are interesting? What metadata do you need? Where
would you check?

AddressSanitizer (1/2)

AddressSanitizer (ASan) detects memory errors. It places red zones
around objects and checks those objects on trigger events. ASan
detects the following types of bugs:

Out-of-bounds accesses to heap, stack and globals
Use-after-free

Use-after-return (configurable)

Use-after-scope (configurable)

Double-free, invalid free

Memory leaks (experimental)

Typical slowdown introduced by AddressSanitizer is 2x.

AddressSanitizer (2/2)

Goal: detect memory safety violations (both spatial and temporal)

Key idea: allocate redzones (prohibited area around memory
objects), check each memory access if it targets a redzone.

m What kind of metadata would you record? Where?
m What kind of operations would you instrument?

m What kind of optimizations could you think of?

ASan Metadata

m Record live objects, guard them by placing redzones around
them.

m ASan uses a table that maps each 8-byte word in memory to
one byte in the table. Advantage: simple address calculation
(offset+address>>3); disadvantage: memory overhead.

m ASan stores accessibility of each word as metadata (that is, is a
given address accessible or not).

ASan runtime library

m Initializes shadow map at startup

m Replaces malloc/free to update metadata (and pad allocations
with redzones)

m Intercepts special functions such as memset

ASan policy

m Instrument every single access, check for poison value in
shadow table

m Advantage: fast checks

m Disadvantage: large memory overhead (especially on 64 bit),
still slow (2x)

LeakSanitizer

m LeakSanitizer detects run-time memory leaks. It can be
combined with AddressSanitizer to get both memory error and
leak detection, or used in a stand-alone mode.

m LSan adds almost no performance overhead until process
termination, when the extra leak detection phase runs.

MemorySanitizer

m MemorySanitizer detects uninitialized reads. Memory
allocations are tagged and uninitialized reads are flagged.

m Typical slowdown of MemorySanitizer is 3x.

m Note: do not confuse MemorySanitizer and AddressSanitizer.

UndefinedBehaviorSanitizer

m UndefinedBehaviorSanitizer (UBSan) detects undefined
behavior. It instruments code to trap on typical undefined
behavior in C/C++ programs. Detectable errors are:

Unsigned/misaligned pointers

Signed integer overflow

Conversion between floating point types leading to overflow
[llegal use of NULL pointers

[llegal pointer arithmetic

m Slowdown depends on the amount and frequency of checks.
This is the only sanitizer that can be used in production. For
production use, a special minimal runtime library is used with
minimal attack surface.

ThreadSanitizer

m ThreadSanitizer detects data races between threads. It
instruments writes to global and heap variables and records
which thread wrote the value last, allowing detecting of WAW,
RAW, WAR data races.

m Typical slowdown is 5-15x with 5-15x memory overhead.

HexType

m HexType detects type safety violations. It records the true type
of allocated objects and makes all type casts explicit.

m Typical slowdown is 0.5x.

Sanitizers

m AddressSanitizer:
https://clang.llvm.org/docs/AddressSanitizer.html

m LeakSanitizer: https://clang.llvm.org/docs/LeakSanitizer.html

m MemorySanitizer:
https://clang.llvm.org/docs/MemorySanitizer.html

m UndefinedBehaviorSanitizer:
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

m ThreadSanitizer:
https://clang.llvm.org/docs/ThreadSanitizer.html

m HexType: https://github.com/HexHive /HexType

Use sanitizers to test your code. More sanitizers are in development.

https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/LeakSanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/ThreadSanitizer.html
https://github.com/HexHive/HexType

Testing Summary and conclusion

m Software testing finds bugs before an attacker can exploit them

m Manual testing: write test cases to trigger exceptions

m Fuzz testing automates and randomizes testing

m Sanitizers allow early bug detection, not just on exceptions

m AddressSanitizer is the most commonly used sanitizer and
enforces probabilistic memory safety by recording metadata for
every allocated object and checking every memory read/write.

Model for Control-Flow Hijack Attacks

Widely-adopted defense mechanisms

m Hundreds of defense mechanisms were proposed
m Only few mitigations were adopted

m Factors that increase chances of adoption:

m Mitigation of the most imminent problem
m (Very) low performance overhead
m Fits into the development cycle

Attack vector: code injection

m Simplest form of code execution

m Generally consists of two steps:

m Inject code somewhere into the process
m Redirect control-flow to injected code

Data Execution Prevention (DEP)

m No distinction between code and data (for example, x86, ARM)

m Any data in the process could be interpreted as code (code
injection: an attacker redirects control-flow to a buffer that
contains attacker-controlled data as shellcode)

m Defense assumption: if an attacker cannot inject code (as
data), then a code execution attack is not possible.

DEP implementation

m HW extension, add NX-bit (No eXecute) to page table entry
m Intel calls this per-page bit XD (eXecute Disable)
m AMD calls it Enhanced Virus Protection
m ARM calls it XN (eXecute Never)
m This is an additional bit for every mapped virtual page. If the
bit is set, then data on that page cannot be interpreted as code
and the processor will trap if control flow reaches that page.

DEP summary

m DEP is now enabled widely by default (whenever a hardware
support is available such as for x86 and ARM)

m Stops all code injection
m Check for DEP with checksec.sh

m DEP may be disabled through gcc flags: -z execstack

https:////github.com/slimm609/checksec.sh

Attacks evolve: from code injection to
reuse

m Did DEP solve all code execution attacks?

m Unfortunately not! But attacks got (much?) harder

A code injection attack consists of two stages:

B) redirecting control flow
B to injected code

DEP prohibits execution of injected code

m DEP does not stop the redirection of control flow
m Attackers can still hijack control flow to existing code

Code reuse

m The attacker can overwrite a code pointer (for example, a
function pointer, or a return pointer on the stack)

m Prepare the right parameters on the stack, reuse a full function
(or part of a function)

From Code Reuse to full ROP

Instead of targeting a simple function, we can target a gadget

m Gadgets are a sequence of instructions ending in an indirect
control-flow transfer (for example, return, indirect call, indirect

jump)
m Prepare data and environment so that, for example, pop

instructions load data into registers

m A gadget invocation frame consists of a sequence of 0 to n
data values and an pointer to the next gadget. The gadget
uses the data values and transfers control to the next gadget

Link to simple ROP tutorial

https://crypto.stanford.edu/~blynn/rop/

Address Space Randomization (ASR)

The security improvement of ASR depends on (i) the avail-
able entropy for randomized locations, (ii) the completeness
of randomization (i.e., are all objects randomized), and (iii)
the absence of information leaks.

m Successful control-flow hijack attacks depend on the attacker
overwriting a code pointer with a known alternate target

m ASR changes (randomizes) the process memory layout

m If the attacker does not know where a piece of code (or data)
is, then it cannot be reused in an attack

m Attacker must first learn or recover the address layout

Candidates for randomization

Trade-off between overhead, complexity, and security benefit.
Randomize start of heap

Randomize start of stack

Randomize start of code (PIE for executable, PIC each library)
Randomize mmap allocated regions

Randomize individual allocations (malloc)

Randomize the code itself, e.g., gap between functions, order
of functions, basic blocks, ...

Randomize members of structs, e.g., padding, order.

Different forms of fine-grained randomization exist. Software
diversity is a related concept.

Address Space Layout Randomization
(ASLR)

ASLR is a practical form of ASR.
m ASLR focuses on blocks of memory
m Heap, stack, code, executable, mmap regions

m ASLR is inherently page-based

ASLR entropy

Assume start addresses of all sections are randomized
Entropy of each section is key to security
Attacker targets section with lowest entropy

Early ASLR implementations had low entropy on the stack and
no entropy on x86 for the executable (non-PIE executables)

Linux (through Exec Shield) uses 19 bits of entropy for the
stack (on 16 byte period) and 8 bits of mmap entropy (on
4096 byte period).

Stack canaries

Attacks relied on a stack-based buffer overflow to inject code

Memory safety would mitigate this problem but adding full
safety checks is not feasible due to high performance overhead

Key insight: buffer overflows require pointer arithmetic

m Instead of checking each memory dereference during function
execution, we check the integrity of a variable once

Assumption: we only prevent ROP control-flow hijack attacks

We therefore only need to protect the integrity of the return
instruction pointer

Stack canaries

Place a canary after a potentially vulnerable buffer
Check the integrity of the canary before the function returns

The compiler may place all buffers at the end of the stack
frame and the canary just before the first buffer. This way, all
non-buffer local variables are protected as well.

Limitation: the stack canary only protects against continuous
overwrites iff the attacker does not know the canary

An alternative is to encrypt the return instruction pointer by
xoring it with a secret

Other mitigations

m Fortify source: protect against format string attacks

m Safe exception handling: protect against popping exception
frames

Control-Flow Integrity

CFl is a defense mechanism that protects applications
against control-flow hijack attacks. A successful CFl mech-
anism ensures that the control-flow of the application never
leaves the predetermined, valid control-flow that is defined
at the source code/application level. This means that an
attacker cannot redirect control-flow to alternate or new
locations.

CHECK(fn);
(*fn)(x);

Y

Figure 1: CFI target restriction

Basics of a CFl mechanism

Core idea: restrict the dynamic control flow of the application to
the control-flow graph of the application.

m Target set construction

m Dynamic enforcement mechanism to execute runtime checks

CFI: target set construction

How do we infer the control-flow graph (for C/C++ programs)? A
static analysis (on source code or binary) can recover an
approximation of the control-flow graph. Precision of the analysis is
crucial!

m Valid functions

m Arity

m Function prototypes

m Class hierarchy analysis

CFI: target set construction

m Trade-off between precision and compatibility.

m A single set of valid functions is highly compatible with other
software but results in imprecision due to the large set size

m Class hierarchy analysis results in small sets but may be
incompatible with other source code and some programmer
patterns (for example, casting to void or not passing all
parameters)

CFl: limitations

m CFI allows the underlying bug to fire and the memory
corruption can be controlled by the attacker. The defense only
detects the deviation after the fact, that is, when a corrupted
pointer is used in the program

m Over-approximation in the static analysis reduces security
guarantees

m Some attacks remain possible, for example, an attacker is free
to modify the outcome of any conditional jump (if clauses
depend on unprotected data value)

OS support for mitigation and sanitization

m Fault or trap signal: a segmentation fault serves as a fast and
efficient way to interrupt and stop execution.

m Virtual address space: the OS controls this important
abstraction and during program instantiation the OS can
introduce randomness and diversity to make exploitation more
costly

m Segments: the OS enables thread-local data by repurposing
segment registers, stack canaries are stored in thread-local data

m Virtual address space: not all memory needs to be mapped to
physical memory, enabling shadow data structures as used for
sanitization

m Access to new architecture features such as Intel MPK
(memory protection keys), ARM PAC (pointer authentication
codes), shadow stacks, . ..

Mitigation Summary and conclusion

m Deployed mitigations do not stop all attacks

m Data Execution Prevention stops code injection attacks, but
does not stop code reuse attacks

m Address Space Layout Randomization is probabilistic,
shuffles memory space, prone to information leaks

m Stack Canaries are probabilistic, do not protect against direct
overwrites, prone to information leaks

m CFl restricts control-flow hijack attacks, does not protect
against data-only attacks

