
Virtual CPU (Scheduling)
CSC 343, Operating Systems

Topics covered in this lecture

Scheduling has two aspects: 1) how to switch from one process to
another and 2) what process should run next

Mechanism: context switch (how to switch)
Mechanism: preemption (keeping control)
Policy: scheduling (where to switch to)

This slide deck covers chapters 7–10 in OSTEP.

Scheduling

How does the kernel switch from one process to another?

System has several ready processes
For simplicity, we assume one CPU

How does the kernel stay in control?

Processes may yield() or execute I/O
Configurable timer interrupts let OS take control

How does the kernel switch from one process to another?

Context switch saves running process’ state in kernel structure
Context switch restores state of next process
Context switch transfers control to next process and “returns”

Note: a context switch is transparent to the process

Scheduling

How does the kernel switch from one process to another?

System has several ready processes
For simplicity, we assume one CPU

How does the kernel stay in control?

Processes may yield() or execute I/O
Configurable timer interrupts let OS take control

How does the kernel switch from one process to another?

Context switch saves running process’ state in kernel structure
Context switch restores state of next process
Context switch transfers control to next process and “returns”

Note: a context switch is transparent to the process

Scheduling

How does the kernel switch from one process to another?

System has several ready processes
For simplicity, we assume one CPU

How does the kernel stay in control?

Processes may yield() or execute I/O
Configurable timer interrupts let OS take control

How does the kernel switch from one process to another?

Context switch saves running process’ state in kernel structure
Context switch restores state of next process
Context switch transfers control to next process and “returns”

Note: a context switch is transparent to the process

Scheduling

How does the kernel switch from one process to another?

System has several ready processes
For simplicity, we assume one CPU

How does the kernel stay in control?

Processes may yield() or execute I/O
Configurable timer interrupts let OS take control

How does the kernel switch from one process to another?

Context switch saves running process’ state in kernel structure
Context switch restores state of next process
Context switch transfers control to next process and “returns”

Note: a context switch is transparent to the process

Mechanism: context switch

A context switch is a mechanism that allows the OS to store the
current process state and switch to some other, previously stored
context.

Reasons for a context switch:

The process completes/exits
The process executes a slow HW operation (loading from disk)
and the OS switches to another task that is ready
The hardware requires OS help and issues an interrupt
The OS decides to preempt the task and switch to another task
(i.e., the processes has used up its time slice)

Mechanism: context switch (pseudo code)

A function call that returns asynchronously: process A starts
the execution of the context switch but process B continues
execution after the return of the function.

The function saves all registers in a scratch area (on the process’
kernel stack or in a predefined area of the task struct).
The OS switches address spaces.
The function restores all registers from the scratch area.
The OS returns to process B.

Mechanism: context switch (example)
void ctx_swtch(struct context *old, struct context *new)
Save old registers
movl 4(%esp), %eax # load ptr to old into eax
popl 0(%eax) # store old IP to old
movl %esp, 4(%eax) # store stack pointer
movl %ebx, 8(%eax) # store other registers
...
movl %ebp, 28(%eax)

Load new registers
movl 4(%esp), %eax # load ptr to new into eax
movl 28(%eax), %ebp # restore other registers
...
movl 8(%eax), %ebx
movl 4(%eax), %esp # stack switch (from now on new stack)
pushl 0(%eax) # store return addr
ret # finally return into new ctxt

Mechanism: preemption

If a task never gives up control (yield()), exits, or performs I/O
then it could run forever and the OS could not gain control.

The OS therefore sets a timer before scheduling a process. If the
timer expires, the hardware interrupts the execution of the process
and switches to the kernel. The kernel then decides if the process
may continue.

Mechanism: preemption

If a task never gives up control (yield()), exits, or performs I/O
then it could run forever and the OS could not gain control.

The OS therefore sets a timer before scheduling a process. If the
timer expires, the hardware interrupts the execution of the process
and switches to the kernel. The kernel then decides if the process
may continue.

What is a scheduling policy?

The context switch mechanism takes care of how the kernel
switches from one process to another, namely by storing its context
and restoring the context of the other process.

The scheduling policy determines which process should run next. If
there is only one “ready” process then the answer is easy. If there
are more processes then the policy decides in which order processes
execute.

Scheduler metrics

When analyzing scheduler policies, we use the following terms:

Utilization: what fraction of time is the CPU executing a
program (goal: maximize)
Turnaround time: total global time from process creation to
process exit (goal: minimize)
Response time: time from becoming ready to being
scheduled (goal: minimize)
Fairness: all processes get same amount of CPU over time
(goal: no starvation)
Progress: allow processes to make forward progress (goal:
minimize kernel interrupts)

Scheduler metrics

When analyzing scheduler policies, we use the following terms:

Utilization: what fraction of time is the CPU executing a
program (goal: maximize)
Turnaround time: total global time from process creation to
process exit (goal: minimize)
Response time: time from becoming ready to being
scheduled (goal: minimize)
Fairness: all processes get same amount of CPU over time
(goal: no starvation)
Progress: allow processes to make forward progress (goal:
minimize kernel interrupts)

Reminder: process states

Blocked

Running Ready

I/O: start I/O: done

Deschedule

Schedule

Scheduler implementation

Simplest form: each state has an associated queue of tasks.

task_struct_t *get_next_task() {
// consult task queues to find next runnable task

}

void enqueue_task(task_struct_t *task) {
// set task to ready

// update ready queue so that it can run at its turn
}

Scheduling assumptions

Let’s understand scheduler policies step by step. We start with
some simplifying assumptions

Each job runs for the same amount of time
All jobs arrive at the same time
All jobs only use the CPU (no I/O)
Run-time of jobs is known
For now, we assume a single CPU

First In, First Out (FIFO)

Tasks A, B, C of len=2
arrive at T=0 (0,2)
Average turnaround

(2+4+6)/3 = 4
Average response

(0+2+4)/3 = 2

A B C

0 1 2 3 4 5 6 7 8 9 10

Finding: easy, simple, straight forward. What are drawbacks?

First In, First Out (FIFO)

Tasks A, B, C of len=2
arrive at T=0 (0,2)
Average turnaround

(2+4+6)/3 = 4
Average response

(0+2+4)/3 = 2

A B C

0 1 2 3 4 5 6 7 8 9 10

Finding: easy, simple, straight forward. What are drawbacks?

Scheduling assumptions

Each job runs for the same amount of time
All jobs arrive at the same time
All jobs only use the CPU (no I/O)
Run-time of jobs is known

FIFO challenge: long running task

Task A is now of len=6
Average turnaround

(6+8+10)/3 = 8
Average response

(0+6+8)/3 = 4.7

A B C

0 1 2 3 4 5 6 7 8 9 10

Finding: long jobs delay short jobs, turnaround/response time suffer!

FIFO challenge: long running task

Task A is now of len=6
Average turnaround

(6+8+10)/3 = 8
Average response

(0+6+8)/3 = 4.7

A B C

0 1 2 3 4 5 6 7 8 9 10

Finding: long jobs delay short jobs, turnaround/response time suffer!

SJF: Shortest Job First

Long running tasks delay other tasks (convoy effect: one long
running task delays many short running tasks like a truck
followed by many cars)
Short jobs must wait for completion of long task

New scheduler: choose ready job with shortest runtime!

SJF: turnaround

Task A is now of len=6
Average turnaround

(2+4+10)/3 = 5.3
Average response

(0+2+4)/3 = 2

B C A

0 1 2 3 4 5 6 7 8 9 10

Scheduling assumptions

Each job runs for the same amount of time
All jobs arrive at the same time
All jobs only use the CPU (no I/O)
Run-time of jobs is known

SJF: another example

Tasks B, C now arrive at 1
Average turnaround

(6+7+9)/3 = 7.3
Average response

(0+5+7)/3 = 4

A B C

0 1 2 3 4 5 6 7 8 9 10

Finding: long running jobs cannot be interrupted, delay short jobs

SJF: another example

Tasks B, C now arrive at 1
Average turnaround

(6+7+9)/3 = 7.3
Average response

(0+5+7)/3 = 4

A B C

0 1 2 3 4 5 6 7 8 9 10

Finding: long running jobs cannot be interrupted, delay short jobs

Preemptive scheduling

Previous schedulers (FIFO, SJF) are non-preemptive.
Non-preemptive schedulers only switch to another process if
the current process gives up the CPU voluntarily.
Preemptive schedulers may take CPU control at any time,
switching to another process according to the scheduling policy.

New scheduler: shortest time to completion first (STCF),
always run the job that will complete the fastest.

Preemptive scheduling

Previous schedulers (FIFO, SJF) are non-preemptive.
Non-preemptive schedulers only switch to another process if
the current process gives up the CPU voluntarily.
Preemptive schedulers may take CPU control at any time,
switching to another process according to the scheduling policy.

New scheduler: shortest time to completion first (STCF),
always run the job that will complete the fastest.

Preemptive scheduling: STCF

Tasks B, C now arrive at 1
Average turnaround

(2+4+10)/3 = 5.3
“First” response

(0+0+2)/3 = 0.7
Task A takes a break!

A B C A

0 1 2 3 4 5 6 7 8 9 10

Finding: reschedule whenever new jobs arrive, prioritize short jobs

Preemptive scheduling: STCF

Tasks B, C now arrive at 1
Average turnaround

(2+4+10)/3 = 5.3
“First” response

(0+0+2)/3 = 0.7
Task A takes a break!

A B C A

0 1 2 3 4 5 6 7 8 9 10

Finding: reschedule whenever new jobs arrive, prioritize short jobs

Next metric: response time

So far, we have optimized for turnaround time (i.e., completing
the tasks as fast as possible).

On an interactive system, response time is equally important,
i.e., how long it takes until a task is scheduled.

Turnaround versus response time

Tasks A (2,0) and B (1, 1)
B turnaround: 2
B response time: 1 A B

0 1 2 3 4 5 6 7 8 9 10

Round robin (RR)

Previous schedulers optimize for turnaround.

Optimize response time: alternate ready processes every
fixed-length time slice.

Round robin

Tasks A, B, C (3, 0)
Average response time

(0+1+2)/3 = 1
Compare to FIFO where
average response time is 3
Turnaround increases

(7+8+9)/3 = 8 for RR
(3+6+9)/3 = 6 for SJF

A B C A B C A B C

0 1 2 3 4 5 6 7 8 9 10

Finding: responsiveness increases turnaround (for equally long tasks)

Round robin

Tasks A, B, C (3, 0)
Average response time

(0+1+2)/3 = 1
Compare to FIFO where
average response time is 3
Turnaround increases

(7+8+9)/3 = 8 for RR
(3+6+9)/3 = 6 for SJF

A B C A B C A B C

0 1 2 3 4 5 6 7 8 9 10

Finding: responsiveness increases turnaround (for equally long tasks)

Scheduling assumptions

Each job runs for the same amount of time
All jobs arrive at the same time
All jobs only use the CPU (no I/O)
Run-time of jobs is known

I/O awareness

So far, the scheduler only considers preemptive events (i.e., the
timer runs out) or process termination/creation to reschedule.

I/O is usually incredibly slow and can be carried out
asynchronously

Finding: scheduler must consider I/O, unused time used by others

I/O awareness

So far, the scheduler only considers preemptive events (i.e., the
timer runs out) or process termination/creation to reschedule.

I/O is usually incredibly slow and can be carried out
asynchronously

Finding: scheduler must consider I/O, unused time used by others

Scheduling assumptions

Each job runs for the same amount of time
All jobs arrive at the same time
All jobs only use the CPU (no I/O)
Run-time of jobs is known

Advanced scheduling: multi-level feedback
queue (MLFQ)

Goal: general purpose scheduling

Challenge: The scheduler must support both long running
background tasks (batch processes) and low latency foreground
tasks (interactive processes).

Batch process: response time not important, cares for long run
times (reduce the cost of context switches, cares for lots of
CPU, not when)
Interactive process: response time critical, short bursts (context
switching cost not important, not much CPU needed but
frequently)

Advanced scheduling: multi-level feedback
queue (MLFQ)

Goal: general purpose scheduling

Challenge: The scheduler must support both long running
background tasks (batch processes) and low latency foreground
tasks (interactive processes).

Batch process: response time not important, cares for long run
times (reduce the cost of context switches, cares for lots of
CPU, not when)
Interactive process: response time critical, short bursts (context
switching cost not important, not much CPU needed but
frequently)

MLFQ: basics
Approach: multiple levels of round robin

Each level has higher priority and preempts all lower levels
Process at higher level will always be scheduled first
High levels have short time slices, lower levels run for longer

Decreasing Priority

Ti
m
e
Sl
ice

Set of rules adjusts priorities dynamically.

Rule 1: if prio(A) > prio(B) then A runs.
Rule 2: if prio(A) == prio(B) then A, B run in RR

MLFQ: priority adjustments

Goal: use past behavior as predictor for future behavior.

Rule 3: processes start at top priority
Rule 4: if process uses up full time slice, lower its priority

MLFQ challenges: starvation

Low priority tasks may never run on a busy system.

Rule 5: periodically move all jobs to the topmost queue

MLFQ challenges: gaming the scheduler

High priority process could yield before its time slice is up,
remaining at high priority.

Rule 4’: account for total time at priority level (and not just
time of the last time slice)

MLFQ summary

Rule 1: if prio(A) > prio(B) then A runs.
Rule 2: if prio(A) == prio(B) A, B run in RR
Rule 3: new processes start with top priority
Rule 4: lower process’ priority when whole time slice is used
Rule 5: periodically move all jobs to the topmost queue

Decreasing Priority

Ti
m
e
Sl
ice

CFS: Completely Fair Scheduler

Idea: each task runs in parallel and consumes equal CPU share
Approach: calculate time process receives on ideal processor
Example: assume 4 processes are ready, so they would receive
1/4 of the CPU each (add this time to the book keeping)

Single Task

100% CPU

Two Tasks

50% CPU/Task

Four Tasks

25% CPU/Task

CFS: virtual time
On real hardware, we can run only a single task at once, so we have
to introduce the concept of “virtual runtime.” The virtual runtime
of a task specifies when its next timeslice would start execution on
the ideal multi-tasking CPU described above. In practice, the virtual
runtime of a task is its actual runtime normalized to the total
number of running tasks.

CFS keeps track of how long each process should have
executed on an ideal processor.

For each time slice, it calculates the fraction each process
would have received and keeps these balances in a tree.

The process with the highest balance is then scheduled

Linux used an O(1) scheduler based on multi-level feedback
queues but switched to a completely fair scheduler in 2007

https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt

CFS: implementation

Implementation: keep all processes in a red-black tree, sorted
by maximum execution time (keep track of their positive
balance)
Scheduling

Schedule leftmost process (the one with the highest balance)
If the process exits, remove it from the scheduling tree
On interrupt (end of time slice or I/O), reinsert the process into
the tree at its new position
Repeat

Summary

Context switch and preemption are fundamental mechanisms
that allow the OS to remain in control and to implement higher
level scheduling policies.
Schedulers need to optimize for different metrics: utilization,
turnaround, response time, fairness and forward progress

FIFO: simple, non-preemptive scheduler
SJF: non-preemptive, prevents process jams
STFC: preemptive, prevents jams of late processes
RR: preemptive, great response time, bad turnaround
MLFQ: preemptive, most realistic
CFS: fair scheduler by virtualizing time

Insight: past behavior is good predictor for future behavior

