Flash-based SSDs
CSC 343, Operating Systems

Topics covered in this lecture

m Flash-based SSDs
This slide deck covers chapters 44 in OSTEP.

Flash-based SSDs

m Solid-state storage devices are built out of transistors, similar
to memory and processors

m No mechanical or moving parts

m NAND-based flash is the technology behind Solid State Drives
(SSDs) and has unique properties

m To write a given chunk (flash page) a bigger chunk needs to be
erased

m Writing to a page too often will cause it to wear out

Storing a Single Bit

m Flash chips are designed to store one or more bits in a single
transistor

m Single-level cell (SLC): a single bit is stored

m Multi-level cell (MLC): two bits are encoded into different levels
of charge

m Triple-level cell (TLC): three bits are encoded

Terminology

m Flash chips are organized into banks or planes which consist
of a large number of cells

m A bank is accessed in two different sized units: blocks and
pages

m Blocks are typically 128 KB or 256 KB and pages are a few KB
in size (for example 4 KB)

Block: 0 1 2
Page: 00 01 02 03|04 05 06 07|08 09 10 11
Content: [| | | [[| [[|

m To write to a page within a block, the block must first be
erased

Basic Flash Operations

m Read (a page): a client can read any page by specifying the
page number; typically fast (microseconds)

m Erase (a block): before writing to a page, the entire block the
page is is within must be erased (all bits set to 1); typically
slow (milliseconds)

m Program (a page): write data to a page by changing some of
the ones to zeros; slower than reads, but faster than erases
(100s of microseconds)

Flash States

m Pages start in an INVALID state

m Erasing a block sets all pages within that block to an ERASED

state

m Programming a page results in a VALID state for the page

m Example state transitions:

[
Erase() EEEE
Program(0) VEEE
Program(0) error
Program(1) VVEE
Erase() EEEE

Initial: pages in block are invalid

State of pages in block set to erased
Program page 0O; state set to valid

Cannot reprogram page after programming
Program page 1

Contents erased

Detailed Example

m Initial State
Page 0 Page 1 Page 2 Page 3
| 00011000 | 11001110 | 00000001 | 00111111
VALID VALID VALID VALID

m Want to write to page 0; must erase first
Page 0 Page 1 Page 2 Page 3

Lot | 11 [111111 | 1111111

ERASED ERASED ERASED ERASED

m Program page 0
Page 0 Page 1 Page 2 Page 3

| 00000011 | 11111111 [11111111 [11111111

VALID ERASED ERASED ERASED

m Problem: previous contents of Pages 1 to 3 are gone

Flash Performance and Reliability

m Wear out: when a flash block is repeatedly erased and
programmed it builds up a little extra charge which makes it
difficult to differentiate between 0 and 1.

m Manufacturers rate MLC-based blocks to have a 10,000 P/E
(Program/Erase) cycle lifetime; however, reserch indicates that
lifetimes are much longer than expected

m Disturbance: when accessing a page it is possible that some
bits get flipped from neighboring pages

Flash-Based SSDs

|
Flash Flash | Flash [Flash
Controller

2
g
-
8
=
2
£

m A flash-based SSD is composed of
m a number of flash chips
m volatile memory (for caching and buffering data, etc.)
m control logic (flash translation layer (FTL))

Flash Translation Layer

m The FTL takes read and write requests on logical blocks and
converts them into low-level read, erase, and program
commands on the underlying physical blocks

m A bad FTL organization approach: direct mapped — a read to
logical page N is directly mapped to to a read of physical page
N. A write to page N reads all pages in the block, erases the
block, then programs the new page and all the old pages.

Log-Structured FTL

m FTLs today are log structured

m A write to logical block N appends the write to the next
physical free spot in the currently-being-written to block

m To enable subsequent reads of block N, the device keeps a
mapping table from logical addresses to physical addresses

Log-Structured FTL Example

m Assume the following sequence of operations:

Write(100) with contents a1l
Write(101) with contents a2
Write(2000) with contents b1
B Write(2001) with contents b2

m Initial state

Block: 0 1 2
Page: 00 01 02 03|04 05 06 07|08 09 10 11

e I A

State: i i i Qi|i i i

Log-Structured FTL Example

m Write a1 to logical block 100; we first need to erase

Block:
Page:
Content:
State:

0
00 01 02 03

1
04 05 06 07

2
08 09 10 11

E E E E

m Direct logical block 100 to physical block 0

Block:
Page:

Content

State:

0
00 01 02 03

1
04 05 06 07

2
08 09 10 11

S E

V E E E

Log-Structured FTL Example

On a read, we need to find the physical block associated with
the logical block; when the FTL writes logical block 100 to
physical page 0, it records that fact in an in-memory mapping

table
Table: 100 =0 Memory
Block: 0 1 2
Page: 00 01 02 03|04 05 06 07|08 09 10 11 Flash
Content: [at]| | | [[] [[] Chip
State: V E E E|i i i i|i i i i
The final state
Table: 100 =0 101 =-»1 2000-»2 2001-=3 Memory
Block: 0 1 2
Page: 00 01 02 03|04 05 06 07|08 09 10 11 Flash
Content: [at]a2|bi]b2| | | | [] | Chip
State: V V V VI[i i & i|i i i i

m Problem: log-structured approaches create garbage

Garbage

m Continuing the previous example, assume that blocks 100 and

101 are written to again with contents c1 and c2:

Table: 100 =4 101 =5 20002 2001-3 Memory

Block: 0 1 2

Page: 00 01 02 03|04 05 06 0708 09 10 11 Flash
Content: [at[a2|bt1]|b2]|ct[c2|[| [[] Chip

State:

V V. V.V

V V E E

m Now physical pages 0 and 1, although marked valid, contain

garbage

Garbage Collection

m Garbage collection is the process of finding garbage blocks and
reclaiming them for future use.

m Process:

Find a block that contains one or more garbage pages

Read in the live (non-garbage) pages from that block
Write those pages to the log

Reclaim the entire block for future writes

Garbage Collection Example

m Initial state:

Table: 100 ==4 101 =5 2000-»2 2001-»3 Memory
Block: 0 1 2
Page: 00 01 02 03[04 05 06 07[08 09 10 11 Flash
Content: [al]a2]|b1]b2|cl]c2| | [] | Chip
State: V V V V|V V E E|i i i i
m After collection:
Table: 100 ==4 101 -5 2000-=6 2001-»7 Memory
Block: 0 1 2
Page: 00 01 02 03[04 05 06 07[08 09 10 11 Flash
Content: | | | | [etfe2][bt]p2] [[| Chip
State: E E E E|V V V V|[i 1 1 i

Block-Based Mapping

Another cost of the log-structured approach is the potential for
extremely large mapping tables

Block-level FTL: an approach to reduce costs of mapping by
keeping a pointer per block of the device instead of per page

Block based mapping reduces the amount of mapping

: : block size
information by a factor of age size

Block-Based Mapping Example

The logical block address consists of two portions: a chunk

number and an offset (similar to virtual memory). Here assume
logical blocks 2000, 2001, 2002, and 2003 have the same chunk
number (500).

Table: 500 -4 Memory

Block: 0 1 2

Page: 00 01 02 03|04 05 06 07|08 09 10 11 Flash
Content: [1 [lalbleld] [| | Chip

State:

V V.V V

Block-Based Mapping Example

m A write to logical block 2002 with content c' requires reading
in 2000, 2001, and 2003 and writing out all four logical blocks
in a new location.

Table: 500 -=8 Memory

Block: 0 1 2

Page: 00 01 02 03|04 05 06 07|08 09 10 11 Flash
Content: [] | [] | albfc]d Chip

State: i i i i|E E E E|V V V V

Hybrid Mapping

m A block level mapping greatly reduces the amount of memory
needed for translations, however it causes significant
performance problems when a write is smaller than the physical
block size.

m A hybrid mapping approach keeps a few blocks erased and
directs all writes to them; these are called log blocks.

m The FTL keeps a per-page mapping for the log blocks.

m Goal: keep the number of log blocks small (to keep the
per-page mapping small) and switch them into blocks that can
be pointed to by a single block pointer.

Hybrid Mapping Example

m Assume logical pages 1000, 10001, 10002, and 1003 are
mapped to physical block 2

Log Table:
Data Table: 250 ==8 Memory
Block: 0 1 2
Page: 00 01 02 03|04 05 06 07|08 09 10 11 Flash
Content: [| | | [[| Jalb]|c]d Chip
State: i i i i|i i i i|V V V V

Hybrid Mapping Example

m Now, assume the client overwrites each of these blocks (with
dataa',b', c', and d') in the exact same order:

Log Table: 10000 1001=»=1 1002-»2 1003-»3
Data Table: 250 ==8 Memory
Block: 0 1 2
Page: 00 01 02 03|04 05 06 07|08 09 10 11 Flash
Content: |a' [b'|c |d [] | albfc]d Chip
State: V V V V|i i i i|V V V V

m The blocks have been written in order, so the FTL can perform
a switch merge

Log Table:
Data Table: 250 ==0 Memory
Block: 0 1 2
Page: 00 01 02 03|04 05 06 07|08 09 10 11 Flash
Content: [a'[b|c|a| [[| [[] Chip
State: V. V. V V|i i i i|i 01 i

Hybrid Mapping Example

m Now, assume the client only overwrites logical blocks 1000, and
1001 from the initial state:

Log Table: 10000 1001=»1
Data Table: 250 =8

Memory
Block: 0 1 2
Page: 00 01 02 03|04 05 06 07|08 09 10 11 Flash
Content: [a' |b'| | [1 | Jalb]c]d Chip
State: V V i i|i i i 1|V V V V

Wear Leveling

Idea: because multiple erase/program cycles wear out a flash
block, spread the work across all the blocks evenly

Log-structuring does a good initial job of spreading out write
load; garbage collection helps as well

Problem: sometimes a block will be filled with long-lived data
that does not get overwritten; the garbage collector will never
reclaim the block so it does not receive a fair share of the write
load

Solution: periodically read all the live data out of such blocks
and rewrite it elsewhere making the block available for future
writes

