
Flash-based SSDs
CSC 343, Operating Systems



Topics covered in this lecture

Flash-based SSDs

This slide deck covers chapters 44 in OSTEP.



Flash-based SSDs

Solid-state storage devices are built out of transistors, similar
to memory and processors

No mechanical or moving parts

NAND-based flash is the technology behind Solid State Drives
(SSDs) and has unique properties

To write a given chunk (flash page) a bigger chunk needs to be
erased
Writing to a page too often will cause it to wear out



Storing a Single Bit

Flash chips are designed to store one or more bits in a single
transistor

Single-level cell (SLC): a single bit is stored

Multi-level cell (MLC): two bits are encoded into different levels
of charge

Triple-level cell (TLC): three bits are encoded



Terminology

Flash chips are organized into banks or planes which consist
of a large number of cells

A bank is accessed in two different sized units: blocks and
pages

Blocks are typically 128 KB or 256 KB and pages are a few KB
in size (for example 4 KB)

To write to a page within a block, the block must first be
erased



Basic Flash Operations

Read (a page): a client can read any page by specifying the
page number; typically fast (microseconds)

Erase (a block): before writing to a page, the entire block the
page is is within must be erased (all bits set to 1); typically
slow (milliseconds)

Program (a page): write data to a page by changing some of
the ones to zeros; slower than reads, but faster than erases
(100s of microseconds)



Flash States
Pages start in an INVALID state

Erasing a block sets all pages within that block to an ERASED
state

Programming a page results in a VALID state for the page

Example state transitions:

IIII Initial: pages in block are invalid
Erase() EEEE State of pages in block set to erased
Program(0) VEEE Program page 0; state set to valid
Program(0) error Cannot reprogram page after programming
Program(1) VVEE Program page 1
Erase() EEEE Contents erased



Detailed Example
Initial State

Want to write to page 0; must erase first

Program page 0

Problem: previous contents of Pages 1 to 3 are gone



Flash Performance and Reliability

Wear out: when a flash block is repeatedly erased and
programmed it builds up a little extra charge which makes it
difficult to differentiate between 0 and 1.

Manufacturers rate MLC-based blocks to have a 10,000 P/E
(Program/Erase) cycle lifetime; however, reserch indicates that
lifetimes are much longer than expected

Disturbance: when accessing a page it is possible that some
bits get flipped from neighboring pages



Flash-Based SSDs

A flash-based SSD is composed of
a number of flash chips
volatile memory (for caching and buffering data, etc.)
control logic (flash translation layer (FTL))



Flash Translation Layer

The FTL takes read and write requests on logical blocks and
converts them into low-level read, erase, and program
commands on the underlying physical blocks

A bad FTL organization approach: direct mapped – a read to
logical page N is directly mapped to to a read of physical page
N. A write to page N reads all pages in the block, erases the
block, then programs the new page and all the old pages.



Log-Structured FTL

FTLs today are log structured
A write to logical block N appends the write to the next
physical free spot in the currently-being-written to block

To enable subsequent reads of block N, the device keeps a
mapping table from logical addresses to physical addresses



Log-Structured FTL Example

Assume the following sequence of operations:
1 Write(100) with contents a1
2 Write(101) with contents a2
3 Write(2000) with contents b1
4 Write(2001) with contents b2

Initial state



Log-Structured FTL Example

Write a1 to logical block 100; we first need to erase

Direct logical block 100 to physical block 0



Log-Structured FTL Example
On a read, we need to find the physical block associated with
the logical block; when the FTL writes logical block 100 to
physical page 0, it records that fact in an in-memory mapping
table

The final state



Garbage

Problem: log-structured approaches create garbage

Continuing the previous example, assume that blocks 100 and
101 are written to again with contents c1 and c2:

Now physical pages 0 and 1, although marked valid, contain
garbage



Garbage Collection

Garbage collection is the process of finding garbage blocks and
reclaiming them for future use.

Process:
1 Find a block that contains one or more garbage pages
2 Read in the live (non-garbage) pages from that block
3 Write those pages to the log
4 Reclaim the entire block for future writes



Garbage Collection Example

Initial state:

After collection:



Block-Based Mapping

Another cost of the log-structured approach is the potential for
extremely large mapping tables

Block-level FTL: an approach to reduce costs of mapping by
keeping a pointer per block of the device instead of per page

Block based mapping reduces the amount of mapping
information by a factor of block size

page size



Block-Based Mapping Example

The logical block address consists of two portions: a chunk
number and an offset (similar to virtual memory). Here assume
logical blocks 2000, 2001, 2002, and 2003 have the same chunk
number (500).



Block-Based Mapping Example

A write to logical block 2002 with content c' requires reading
in 2000, 2001, and 2003 and writing out all four logical blocks
in a new location.



Hybrid Mapping

A block level mapping greatly reduces the amount of memory
needed for translations, however it causes significant
performance problems when a write is smaller than the physical
block size.

A hybrid mapping approach keeps a few blocks erased and
directs all writes to them; these are called log blocks.

The FTL keeps a per-page mapping for the log blocks.

Goal: keep the number of log blocks small (to keep the
per-page mapping small) and switch them into blocks that can
be pointed to by a single block pointer.



Hybrid Mapping Example

Assume logical pages 1000, 10001, 10002, and 1003 are
mapped to physical block 2



Hybrid Mapping Example
Now, assume the client overwrites each of these blocks (with
data a', b', c', and d') in the exact same order:

The blocks have been written in order, so the FTL can perform
a switch merge



Hybrid Mapping Example

Now, assume the client only overwrites logical blocks 1000, and
1001 from the initial state:



Wear Leveling

Idea: because multiple erase/program cycles wear out a flash
block, spread the work across all the blocks evenly

Log-structuring does a good initial job of spreading out write
load; garbage collection helps as well

Problem: sometimes a block will be filled with long-lived data
that does not get overwritten; the garbage collector will never
reclaim the block so it does not receive a fair share of the write
load

Solution: periodically read all the live data out of such blocks
and rewrite it elsewhere making the block available for future
writes


