
Virtual CPU (Processes and
Threads)

CSC 343, Operating Systems

Virtualization

Vi
rt
ua
liz
at
io
n

Co
nc
ur
re
nc
y

Pe
rs
ist
en
ce

Security

Topics covered in this lecture

The (virtual) process abstraction

A notion on address spaces

How processes are created

Interaction between processes and the OS

This slide deck covers chapters 4–6 in OSTEP.

CPU, memory, and disk: limitations

Status quo1:

CPUs execute an endless stream of instructions (in memory)

All system memory is in a contiguous physical address space

The disk is a finite set of blocks

All instructions execute in privileged mode

To handle concurrent programs, the OS must separate the execution
of different programs, providing the illusion to programs that each
program is the only running program.

The virtual process abstraction provides this illusion.

1Some simplifying assumptions apply to make our life easier.

CPU, memory, and disk: limitations

Status quo1:

CPUs execute an endless stream of instructions (in memory)

All system memory is in a contiguous physical address space

The disk is a finite set of blocks

All instructions execute in privileged mode

To handle concurrent programs, the OS must separate the execution
of different programs, providing the illusion to programs that each
program is the only running program.

The virtual process abstraction provides this illusion.

1Some simplifying assumptions apply to make our life easier.

Process abstraction

A program consists of static code and data, e.g., on the disk.

A process is an instance of a program (at any time there may
be 0 or more instances of a program running, e.g., a user may
run multiple concurrent shells).

Process definition

A process is an execution stream in the context of a
process state. The execution stream is the sequence
of executing instructions (i.e., the “thread of control”).
The process state encompasses everything that executing
instructions can affect or are affected by (e.g., registers,
address space, persistent state such as files).

Note: state has two sides, the process view and the OS view. The
OS keeps track of the address space and persistence.

Process creation process (1/2)
CPU Memory

DiskProgram

code
data

Process creation process (2/2)
CPU Memory

DiskProgram

code
data

Process

code
data
heap
stack

Comparison of terms:

A program is on-disk application, consisting of code and data;
programs become a process when they are executed

A process is a running instance of a program. A process starts
with a single thread of execution and an address space.

A process can launch multiple threads of execution in the
same address space. Each thread receives its own stack but
they share global data, code, and heap.

Sharing resources: two forms

Time sharing (one at a time) Space sharing (all a little)

Shared in time (I get to use the toolbox exclusively)

Shared in space (I get to pick the two screwdrivers I need)

Sharing resources: two forms

Time sharing (one at a time) Space sharing (all a little)

Shared in time (I get to use the toolbox exclusively)

Shared in space (I get to pick the two screwdrivers I need)

Sharing resources: two forms

Time sharing (one at a time) Space sharing (all a little)

Shared in time (I get to use the toolbox exclusively)

Shared in space (I get to pick the two screwdrivers I need)

Virtualizing the CPU

Goal: give each process the illusion of exclusive CPU access

Reality: the CPU is a shared resource among all processes

Two approaches: shared in time or space
time sharing : exclusive use, one at a time
space sharing : everyone gets a small chunk all the time

Different strategies for CPU, memory, and disk
CPU: time sharing, alternate between tasks
Memory: space sharing (more later)
Disk: space sharing (more later)

Virtualizing the CPU

Goal: give each process the illusion of exclusive CPU access

Reality: the CPU is a shared resource among all processes

Two approaches: shared in time or space
time sharing : exclusive use, one at a time
space sharing : everyone gets a small chunk all the time

Different strategies for CPU, memory, and disk
CPU: time sharing, alternate between tasks
Memory: space sharing (more later)
Disk: space sharing (more later)

OS provides process abstraction

When the user executes a program, the OS creates a process.

OS time-shares CPU across multiple processes.

OS scheduler picks one of the executable processes to run.
Scheduler must keep a list of processes
Scheduler must keep metadata for policy

Difference between policy and mechanism

Policy: which process to run

Mechanism: how to switch from one process to another

Distinction between policy and mechanism enables modularity. The
scheduling policy is independent of the context switch functionality.

Process creation

OS allocates internal data structures

OS allocates an address space
Loads code, data from disk
Creates runtime stack, heap

OS opens basic files (STDIN, STDOUT, STDERR)

OS initializes CPU registers

Process states

Running : this process is currently executing

Ready : this process is ready to execute (and will be scheduled
when the policy decides so)

Blocked : this process is suspended (e.g., waiting for some
action; OS will unblock it when that action is complete)

New : this process is being created (to ensure it will not be
scheduled)

Dead : this process has terminated (e.g., if the parent process
has not read out the return value yet)

Process state transitions

Blocked

Running Ready

I/O: start I/O: done

Deschedule

Schedule

Example: process state transitions

Time Process 0 Process 1 Notes

1 Running Ready
2 Running Ready
3 Running Ready P0 initiates I/O
4 Blocked Running P0 is blocked, P1 runs
5 Blocked Running
6 Blocked Running
7 Blocked Running I/O completes
8 Ready Running P1 is complete/exits
9 Running -

Tangent: idling

What process should be scheduled if all processes are blocked?

The idle process.

Modern kernels use a low priority idle process that is scheduled and
executes if no other process is ready. The idle process never blocks
or executes any I/O.

The idle process is a simple solution to a challenging problem.
Without the idle process, the scheduler would have to check if no
processes are ready to run and would have to conservatively take
action. The idle process guarantees that there is always at least
one process to run.

Tangent: idling

What process should be scheduled if all processes are blocked?

The idle process.

Modern kernels use a low priority idle process that is scheduled and
executes if no other process is ready. The idle process never blocks
or executes any I/O.

The idle process is a simple solution to a challenging problem.
Without the idle process, the scheduler would have to check if no
processes are ready to run and would have to conservatively take
action. The idle process guarantees that there is always at least
one process to run.

Tangent: idling

What process should be scheduled if all processes are blocked?

The idle process.

Modern kernels use a low priority idle process that is scheduled and
executes if no other process is ready. The idle process never blocks
or executes any I/O.

The idle process is a simple solution to a challenging problem.
Without the idle process, the scheduler would have to check if no
processes are ready to run and would have to conservatively take
action. The idle process guarantees that there is always at least
one process to run.

OS data structures

OS maintains data structure (array/list) of active processes.

Information for each process is stored in a process control block
(on Linux, this is called task struct) that contains:

Process identifier (PID)
Process state (e.g., ready)
Pointer to parent process (cat /proc/self/status)
CPU context (if process is not running)
Pointer to address space (cat /proc/self/maps)
Pointer to list of open files (file descriptors, cat
/proc/self/fdinfo/*)

Distinction program / process / thread

Program: consists of an executable on disk. Contains all
information to bootstrap a process

Process: a running instance of a program; has data section
and stack initialized

Thread: a process can have multiple threads in the same
address space (computing on the same data)

Distinction between processes and threads

A thread is a “lightweight process” (LWP)
A thread consists of a stack and register state (stack pointer,
code pointer, other registers).
Each process has one or more threads.

For example, two processes reading address 0xc0f3 may read
different values. While two threads in the same process will read the
same value.

Requesting OS services

Processes can request services through the system call API
(Application Programming Interface).

System calls transfer execution to the OS (the OS generally
runs at higher privileges, enabling privileged operations).

Sensitive operations (e.g., hardware access, raw memory
access) require (execution) privileges.

Some system calls (e.g., read, write) may cause the process
to block, allowing the OS to schedule other processes.

Libraries (the libc) hide system call complexity, export OS
functionality as regular function calls.

Process API

The process API enables a process to control itself and other
processes through a set of system calls:

fork() creates a new child process (a copy of the process)

exec() executes a new program

exit() terminates the current process

wait() blocks the parent until the child terminates

This is a small subset of the complex process API (more later)

Process API: fork(), creating a new
process

The OS allocates data structures for the new process (child).

The OS makes a copy of the caller’s (parent’s) address space.

The child is made ready and added to the list of processes.

fork() returns different values for parent/child.

Parent and child continue execution in their own separate
copy of their address space (next week: how can we efficiently
handle the copy of address spaces?)

Process API: fork() demo!
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char* argv[]) {
printf("Hello, I'm PID %d (%d, %s)\n", (int)getpid(),

argc, argv[0]);
int pid = fork();
if (pid < 0) exit(-1); // fork failed
if (pid == 0) {

printf("o/ I'm PID %d\n", (int)getpid());
} else {

printf("\\o, my child is PID %d\n", pid);
}
return 0;

}

Process API: exec(), executing a (new)
program

Always executing the same program is boring (we would need
one massive program with all functionality, e.g., emacs).

exec() replaces address space, loads new program from disk.

Program can pass command line arguments and environment.

Old address space/state is destroyed except for STDIN,
STDOUT, STDERR which are kept, allowing the parent to
redirect/rewire child’s output!

Why do we need fork() and exec()?

Assume a user wants to start a different program. For that, the
operating system needs to create a new process and create a new
address space to load the program.

Let’s use divide and conquer:

fork() creates a new process with a copy of this address space

exec() creates a new address space for a program

clone() adds a thread (of execution) to this address space

Why do we need fork() and exec()?

Assume a user wants to start a different program. For that, the
operating system needs to create a new process and create a new
address space to load the program.

Let’s use divide and conquer:

fork() creates a new process with a copy of this address space

exec() creates a new address space for a program

clone() adds a thread (of execution) to this address space

Process API: wait(), waiting for a child

Child processes are tied to their parent.

exit(int retval) takes a return value argument.

Parent can wait() for termination of child and read child’s
return value.

A tree of processes

Each process has a parent process

A process can have many child process

Each process again can have child processes

3621 ? Ss _ tmux
3645 pts/2 Ss+ | _ -bash
3673 pts/3 Ss+ | _ -bash

27124 pts/1 Ss+ | _ -bash
10882 pts/5 R+ | | _ ps -auxwf
10883 pts/5 S+ | | _ less
21264 pts/7 Ss | _ -bash
1382 pts/7 T | | _ vim /home/user/notes.txt

14368 pts/9 Ss | _ -bash
29963 pts/9 S+ | _ python

Ensuring efficient execution

A process executes instructions directly on the CPU.

Issues with running directly on hardware:

Process could do something illegal (read/write to memory that
does not belong to the process, access hardware directly)

Process could run forever (OS must stay in control)

Process could do something slow, e.g., I/O (OS may want to
switch to another process)

Solution: OS maintains some control with help from hardware. For
example, the OS maintains timers to intercept the execution at
regular intervals and the process may not execute privileged
instructions that access the hardware directly.

Ensuring efficient execution

A process executes instructions directly on the CPU.

Issues with running directly on hardware:

Process could do something illegal (read/write to memory that
does not belong to the process, access hardware directly)

Process could run forever (OS must stay in control)

Process could do something slow, e.g., I/O (OS may want to
switch to another process)

Solution: OS maintains some control with help from hardware. For
example, the OS maintains timers to intercept the execution at
regular intervals and the process may not execute privileged
instructions that access the hardware directly.

Ensuring efficient execution

A process executes instructions directly on the CPU.

Issues with running directly on hardware:

Process could do something illegal (read/write to memory that
does not belong to the process, access hardware directly)

Process could run forever (OS must stay in control)

Process could do something slow, e.g., I/O (OS may want to
switch to another process)

Solution: OS maintains some control with help from hardware. For
example, the OS maintains timers to intercept the execution at
regular intervals and the process may not execute privileged
instructions that access the hardware directly.

Process isolation policy

On most operating systems, processes are:
Isolated from each other
Isolated from the OS

Isolation is a core requirement for security:
Constrains bugs to the process
Enables privilege isolation
Enables compartmentalization (breaking complex systems into
independent fault domains)

What mechanism allows process isolation?

Process isolation mechanism

Virtual memory: one (virtual) address space per process

Different execution modes: OS executes at higher privileges
Process executes in user mode (ring 3 on x86)
OS executes in super mode (ring 0 on x86)

Summary

Processes are a purely virtual concept

Separating policies and mechanisms enables modularity

OS is a server, reacts to requests from hardware and
processes

Processes are isolated from the OS/other processes
Processes have no direct access to devices
Processes run in virtual memory
OS provides functionality through system calls

A process consists of an address space, associated kernel state
(e.g., open files, network channels), and one or more threads of
execution

