
Virtual Memory (Paging and
Swapping)

CSC 343, Operating Systems



Topics covered in this lecture

Abstraction: address space
Mechanism: virtual address translation
Mechanism: paging
Mechanism: swapping

This slide deck covers chapters 18–22 in OSTEP.



Address spaces

The address space encapsulates all addressable memory
A system has a certain amount of physical memory, this results
in the available physical memory
For simplicity, we assume that each address points to a byte
Virtual and physical address space size can differ both ways
The physically present memory is smaller or equal to the
physical address space size

Example: modern 64-bit CPUs have a 48-bit virtual address space
(with 64 bit pointers) and map to 48 bit of physical address space.
Most machines have less than 256 TiB of memory.



Memory abstraction

The seven layers of memory abstraction complexity:

No virtualization, program runs on bare metal
Time sharing, one program at a time
Space sharing, relocate programs in one shared address space
Space sharing, virtual address space through segment (base)
Space sharing, virtual address space through segment
(base+bounds)
Space sharing, virtual address space through multiple segments
Space sharing, virtual address space through paging



Match the description

One process uses all of memory
Share address space, use a per-process offset
Verify address is in usable part of the address space
Several base+bounds pairs per process
Rewrite code and data before running

Options: base register, static relocation, segments, base & bounds,
time sharing



Limits of segmentation

Segmentation allows reasonable sharing of a physical address space
among several processes. What are the drawbacks?

Space: each segment must be fully backed by memory
Space: physical memory area must be contiguous
(fragmentation)
ISA: instructions explicitly or implicitly encode target segment



Limits of segmentation

Segmentation allows reasonable sharing of a physical address space
among several processes. What are the drawbacks?

Space: each segment must be fully backed by memory
Space: physical memory area must be contiguous
(fragmentation)
ISA: instructions explicitly or implicitly encode target segment



Fragmentation
Fragmentation: unused memory that cannot be used.
External fragmentation: visible to allocator (OS), e.g.,
between segments.
Internal fragmentation: visible to requester, e.g., round-
ing if segment size is a power of 2.

For example: we have 16 KiB of memory. Process A has a code
segment of 4 KiB starting at 2,048, a data segment of 4 KiB
starting at 8,096 and a 1 KiB stack segment starting at 14,336.
The system has 2+2+2+1 = 7 KiB of free memory, but the
maximum contiguous space is 2 KiB. Starting process B that
requires a code segment of 3 KiB would not be possible.

Code
4 KiB

Data
4 KiB

S
12 KiB 2 KiB 2 KiB 1



A more complex MMU: paging

Goal: eliminate requirement that physical memory is contiguous
Eliminate external fragmentation
Grow (and shrink?) segments as needed

Idea: break address spaces and physical memory into pages
Assign memory based on page granularity
Still prone to internal fragmentation (round to page size)



Page

A page is the minimal unit to break up an address space
For processes (virtual address space) this is called a (virtual)
page
As part of the physical address space this is called a frame (or
physical page)
A system with 12 bit pages implies that

the lowest 12 bit of the address specify the page offset
A page’s size is 2ˆ12 bytes (4 KiB)



Paging

Process A
(logical view)

(physical view)



Paging: address translation
How can the MMU translate virtual to physical addresses?

High order bits designate page number
Low order bits designate offset in page
Note: size of virtual and physical address space may be different

page number page offset

translation

frame number page offset



Paging: address space calculations

Virtual address space: 4 GiB (i.e., 32 bits)
Physical address space: 256 TiB (i.e., 48 bits)
Page size: 4 KiB (i.e., 12 bits)

Page numbers use 20 bits (i.e., each process may reference 220

pages of 4 KiB–212–size)
Frame numbers use 36 bits (there is a maximum of 236

physical 4 KiB frames in the system)

Insight: not all virtual or physical space must be allocated.



Paging: address space calculations

Virtual address space: 4 GiB (i.e., 32 bits)
Physical address space: 256 TiB (i.e., 48 bits)
Page size: 4 KiB (i.e., 12 bits)

Page numbers use 20 bits (i.e., each process may reference 220

pages of 4 KiB–212–size)
Frame numbers use 36 bits (there is a maximum of 236

physical 4 KiB frames in the system)

Insight: not all virtual or physical space must be allocated.



Paging: how to translate from virtual to
physical?

Let’s assume a 16 bit virtual, a 20 bit physical address space, and
12 bit for pages.

This means there are 16 pages per process and 256 physical pages.

The simplest approach to translate from virtual to physical
addresses is through a lookup table for each process. The pointer to
the lookup table is stored in a special register (CR3 on x86):

unsigned char v1[16];
void *toPhys(void *ptr) {

void *offset = ptr & (1<<12-1);
// Page for process: Virtual bits & (1 << (16-12) - 1)
unsigned int idx = (unsigned int)((ptr>>12) & (1<<4-1));
// Get physical offset
return (void*)(((unsigned int)(v1[idx])<<12) | offset);

}



Paging: how to translate from virtual to
physical?

Let’s assume a 16 bit virtual, a 20 bit physical address space, and
12 bit for pages.

This means there are 16 pages per process and 256 physical pages.

The simplest approach to translate from virtual to physical
addresses is through a lookup table for each process. The pointer to
the lookup table is stored in a special register (CR3 on x86):

unsigned char v1[16];
void *toPhys(void *ptr) {

void *offset = ptr & (1<<12-1);
// Page for process: Virtual bits & (1 << (16-12) - 1)
unsigned int idx = (unsigned int)((ptr>>12) & (1<<4-1));
// Get physical offset
return (void*)(((unsigned int)(v1[idx])<<12) | offset);

}



Paging: how to translate from virtual to
physical?

Let’s assume a 16 bit virtual, a 20 bit physical address space, and
12 bit for pages.

This means there are 16 pages per process and 256 physical pages.

The simplest approach to translate from virtual to physical
addresses is through a lookup table for each process. The pointer to
the lookup table is stored in a special register (CR3 on x86):

unsigned char v1[16];
void *toPhys(void *ptr) {

void *offset = ptr & (1<<12-1);
// Page for process: Virtual bits & (1 << (16-12) - 1)
unsigned int idx = (unsigned int)((ptr>>12) & (1<<4-1));
// Get physical offset
return (void*)(((unsigned int)(v1[idx])<<12) | offset);

}



Paging: storing other per page information

To align accesses, each entry in 32-bit or 64-bit page tables is
32 or 64 bit (address spaces are byte addressable and bit
operations are costly; similarly, power of 2 alignments are faster
due to caching).
Modern systems store much more information in the page table
than just the physical frame number:

Is the mapping valid?
Protection bits (read, write, execute)
Is the page present?
Is the page referenced?
Is the page dirty?

The OS and the MMU agree on the interpretation of these bits.



Paging: example of a flat page table

CR3

0

1

1

0

0

0

...



Paging: pros and cons

Advantages
No external fragmentation
Fast to allocate (no searching for space) and free (no
coalescing)
Simple to adjust what subset is mapped in core (later)

Disadvantages
Additional memory reference to page table (hint: use a cache)
Internal fragmentation (tension regarding page size)
Required space for page table may be substantial



Working set and locality

A program’s working set is defined as the subset of the
program’s code and data that is currently used. This means
that the working set is a temporal metric that changes over
time as the program makes progress. Most accesses will
be confined to few addresses, exhibiting locality.

Observation: at a given time, a program does not need all data and
code to make progress. The OS may reuse memory that is currently
not used for other processes (space sharing). The hardware may
optimize memory accesses and translation accordingly.



Working set and locality

A program’s working set is defined as the subset of the
program’s code and data that is currently used. This means
that the working set is a temporal metric that changes over
time as the program makes progress. Most accesses will
be confined to few addresses, exhibiting locality.

Observation: at a given time, a program does not need all data and
code to make progress. The OS may reuse memory that is currently
not used for other processes (space sharing). The hardware may
optimize memory accesses and translation accordingly.



Paging: avoid additional memory access

Simple idea: remember previous lookups
Store the last accessed pages in a cache
This cache is called TLB (Translation Lookaside Buffer)
Reduces requirement memory accesses for page walk
If there is an entry in the TLB, reuse!



Paging: The page size tension

Comes from the past systems that had 100KBs of memory.
TLB addressing pages.
Disk swapping issue (discussed later).



Paging: 32 bit address space

Assume 12 bit for pages, 32 bit virtual and 32 bit physical address
space, 4 byte page table entries.

What is the size of a flat page table?

Page table size: entries * size of entry
entries: 2log(virtualaddressspace)−log(pagesize)

entries: 232−12 = 220 = 1MiB
Page table size: 1MiB ∗ 4B = 4MiB

Let’s assume a 32 bit virtual and 48 bit physical address
space and 8 byte entries: 8 MiB

Let’s assume a 64 bit virtual address space and 8 byte
entries: 252 ∗ 8B (32 PiB). We need something better!



Paging: 32 bit address space

Assume 12 bit for pages, 32 bit virtual and 32 bit physical address
space, 4 byte page table entries.

What is the size of a flat page table?

Page table size: entries * size of entry
entries: 2log(virtualaddressspace)−log(pagesize)

entries: 232−12 = 220 = 1MiB
Page table size: 1MiB ∗ 4B = 4MiB

Let’s assume a 32 bit virtual and 48 bit physical address
space and 8 byte entries: 8 MiB

Let’s assume a 64 bit virtual address space and 8 byte
entries: 252 ∗ 8B (32 PiB). We need something better!



Paging: 32 bit address space

Assume 12 bit for pages, 32 bit virtual and 32 bit physical address
space, 4 byte page table entries.

What is the size of a flat page table?

Page table size: entries * size of entry
entries: 2log(virtualaddressspace)−log(pagesize)

entries: 232−12 = 220 = 1MiB
Page table size: 1MiB ∗ 4B = 4MiB

Let’s assume a 32 bit virtual and 48 bit physical address
space and 8 byte entries: 8 MiB

Let’s assume a 64 bit virtual address space and 8 byte
entries: 252 ∗ 8B (32 PiB). We need something better!



Paging: 32 bit address space

Assume 12 bit for pages, 32 bit virtual and 32 bit physical address
space, 4 byte page table entries.

What is the size of a flat page table?

Page table size: entries * size of entry
entries: 2log(virtualaddressspace)−log(pagesize)

entries: 232−12 = 220 = 1MiB
Page table size: 1MiB ∗ 4B = 4MiB

Let’s assume a 32 bit virtual and 48 bit physical address
space and 8 byte entries: 8 MiB

Let’s assume a 64 bit virtual address space and 8 byte
entries: 252 ∗ 8B (32 PiB). We need something better!



Paging: a multi-level table

Paging was introduced when the average 32 bit system had a total
of 4 MiB of memory. 4 MiB of metadata of the page table per
process would leave no memory for the OS or the process.

Insight: most processes only need a fraction of the address
space.
Goal: only allocate metadata for this fraction
Mechanism: a multi-level lookup table.

One or more levels of indirection allow space efficient encoding
Each level adds one more memory lookups during address
translation
What is a good trade-off?



Paging: a multi-level table

CR3

0

1

1

0

0

0

0

1

1

0

0

0

0

0

0

1

0

1



Paging: multi-level table

What size should the individual levels be?
Idea: use page granularity for 32 bit virtual/physical!

4 KiB pages: 1024 x 4 B entries
1024 entries correspond to 10 bit
break address into 10 bit first level, 10 bit second level, 12 bit
offset: 0x3ff 0x3ff 0xfff

1st level 2nd level offset



Paging: multi-level table

Let’s move to a 64 bit virtual/physical address space, 4 KiB
pages

4 KiB pages have space for 512 entries (9 bit)
64 − 12 = 52, i.e., we would need 6 levels of page tables

Let’s shrink the address space to 48 bit!
48 − 12 = 36, i.e., we need 4 levels of page tables
Page walks are still expensive, need high TLB hit rate for
efficiency



Paging: multi-level table

Let’s move to a 64 bit virtual/physical address space, 4 KiB
pages

4 KiB pages have space for 512 entries (9 bit)
64 − 12 = 52, i.e., we would need 6 levels of page tables

Let’s shrink the address space to 48 bit!
48 − 12 = 36, i.e., we need 4 levels of page tables
Page walks are still expensive, need high TLB hit rate for
efficiency



Swapping: when main memory runs out

Observation: main memory may not be enough for all memory
of all processes
Idea: store unused pages of address space on the disk

Allows the OS to reclaim memory when necessary
Allows the OS to over-provision (hand out more memory than
physically available)
When needed, the OS finds and pushes unused pages to disk
Careful strategy needed to avoid deadlock or performance
degradation



Swapping: page fault

The MMU translates virtual to physical addresses using the OS
provided data structures (page tables)
The present bit for each page table entry at each level indicates
if the reference is valid, i.e., resides in memory, or not.

MMU checks present bit during translation
If a page is not present then the MMU triggers a page fault
The OS then enforces its policy to handle the page fault

Virtual to physical translation is transparent to executed
instructions, requires HW support



Swapping: page fault handling

MMU signals CPU to trap and switch to the OS
Page fault handler checks where (which process and what
address) the fault happened

Which process? (Locate data structures)
What address? (Search page in page table)

If page is on the disk: OS issues load request and tells
scheduler to switch to another process
If page is still in memory or can be reproduced (e.g., a zero
page), then the OS creates it and updates data structures
The OS then continues the faulting process by reexecuting the
faulting instruction.



Swapping: page fault handler

Virtual to physical translation happens for every memory access
Why does the MMU switch to the OS during a page fault?

OS handles policy, MMU is the mechanism
MMU handles common case: path to page is valid, page is
present

Page walk can be highly optimized
OS and MMU agree on data structures

OS handles policy decisions
Allows implementation of flexible policies
OS decides which pages are allocated and replaced
OS may also pass information on to the process, e.g., if an
illegal access was made
No need for extremely high speed as page faults are rare



Swapping: page fault handler

Virtual to physical translation happens for every memory access
Why does the MMU switch to the OS during a page fault?

OS handles policy, MMU is the mechanism
MMU handles common case: path to page is valid, page is
present

Page walk can be highly optimized
OS and MMU agree on data structures

OS handles policy decisions
Allows implementation of flexible policies
OS decides which pages are allocated and replaced
OS may also pass information on to the process, e.g., if an
illegal access was made
No need for extremely high speed as page faults are rare



How does the CPU execute a read/write
operation?

CPU issues a load for a virtual address (as part of a memory
load/store or an executed instruction)
MMU checks TLB for virtual address

TLB miss: MMU executes page walk
page table entry is present: update TLB, continue
not present but valid: page fault, switch to OS, OS maps page
and transparently returns to the process
invalid: page fault, switch to OS, OS raises SEG fault and
passes it to the program

TLB hit: obtain physical address, fetch memory location and
return to CPU



Summary

Fragmentation: space lost due to internal or external padding
Paging: MMU fully translates between virtual and physical
addresses

One flat page table (array)
Multi-level page table
Pros? Cons? What are size requirements?

Paging and swapping allows process to execute with only the
working set resident in memory, remaining pages can be stored
on the disk


