
Locking
CSC 343, Operating Systems

Concurrency

Vi
rt
ua
liz
at
io
n

Co
nc
ur
re
nc
y

Pe
rs
ist
en
ce

Security

Topics covered in this lecture

Review of threading and mutual exclusion
Abstraction: locks to protect shared data structures
Mechanism: interrupt-based locks
Mechanism: atomic hardware locks
Busy waiting (spin locks) versus wait queues

This slide deck covers chapters 28, 29, 30 in OSTEP.

Threads: Executions context

Threads are independent execution context
Similar to processes

Except that they share the same address space

Why do we need threads?

CPUs run very fast, they might get blocked for fetching data
Multiples of CPUs are available that can do a job in parallel

Threads: Executions context

Threads are independent execution context
Similar to processes

Except that they share the same address space

Why do we need threads?

CPUs run very fast, they might get blocked for fetching data
Multiples of CPUs are available that can do a job in parallel

Threads: Executions context

Threads are independent execution context
Similar to processes

Except that they share the same address space

Why do we need threads?

CPUs run very fast, they might get blocked for fetching data
Multiples of CPUs are available that can do a job in parallel

Threads: Executions context

Threads are independent execution context
Similar to processes

Except that they share the same address space

Why do we need threads?

CPUs run very fast, they might get blocked for fetching data
Multiples of CPUs are available that can do a job in parallel

For parallelism and concurrency

Parallelism: multiple threads (or processes) working on a
single task using multiple CPU cores
Concurrency: tasks can start, run, and complete in
overlapping time periods, e.g., through time multiplexing by
interleaving their executions, or through parallelism when they
are executed at the same time

Note that processes can share information through partially
overlapping address spaces or by communicating (future lectures).

Race conditions
int cnt = 0;
void *incer(void *arg) {

printf("%s starts\n", (char*)arg);
for (int i=0; i < 1000000; ++i) {

cnt = cnt + 1;
}
return NULL;

}
int main(int argc, char *argv[]) {

pthread_t t1, t2;
pthread_create(&t1, NULL, incer, "T1");
pthread_create(&t2, NULL, incer, "T2");
pthread_join(t1, NULL);
pthread_join(t2, NULL);
printf("Counter: %d (expected: %d)\n", cnt, 1000000*2);
return 0;

}

Race conditions: what is happening?

$./21-race
T1 starts
T2 starts
T1 is done
T2 is done
Counter: 1150897 (expected: 2000000)
$

Assembly of incer:

mov 0x601044,%eax ; load value
add $0x1,%eax ; increment
mov %eax,0x601044 ; store value

Both threads load the same value, increment, and write back. The
addition of one thread is lost!

Race conditions: what is happening?

$./21-race
T1 starts
T2 starts
T1 is done
T2 is done
Counter: 1150897 (expected: 2000000)
$

Assembly of incer:

mov 0x601044,%eax ; load value
add $0x1,%eax ; increment
mov %eax,0x601044 ; store value

Both threads load the same value, increment, and write back. The
addition of one thread is lost!

Race conditions: what is happening?

$./21-race
T1 starts
T2 starts
T1 is done
T2 is done
Counter: 1150897 (expected: 2000000)
$

Assembly of incer:

mov 0x601044,%eax ; load value
add $0x1,%eax ; increment
mov %eax,0x601044 ; store value

Both threads load the same value, increment, and write back. The
addition of one thread is lost!

Race conditions

Concurrent execution leads to race conditions
Access to shared data must be mediated

Critical section: part of code that accesses shared data
Mutual exclusion: only one process is allowed to execute
critical section at any point in time
Atomicity: critical section executes as an uninterruptible block

A mechanism to achieve atomicity is through locking.

Locks: basic idea

Lock variable protects critical section
All threads competing for critical section share a lock
Only one thread succeeds at acquiring the lock (at a time)
Other threads must wait until lock is released

lock_t mutex;
...
lock(&mutex);
cnt = cnt + 1;
unlock(&mutex);

Locks: basic idea

Requirements: mutual exclusion, fairness, and performance
Mutual exclusion: only one thread in critical section
Fairness: all threads should eventually get the lock
Performance: low overhead for acquiring/releasing lock

Lock implementation requires hardware support
. . . and OS support for performance

Lock operations

void lock(lock_t *lck): acquires the lock, current thread
owns the lock when function returns
void unlock(lock_t *lck): releases the lock

Note that we assume that the application correctly uses locks for
each access to the critical section.

Lock operations

void lock(lock_t *lck): acquires the lock, current thread
owns the lock when function returns
void unlock(lock_t *lck): releases the lock

Note that we assume that the application correctly uses locks for
each access to the critical section.

Interrupting locks

Turn off interrupts when executing critical sections
Neither hardware nor timer can interrupt execution
Prevent scheduler from switching to another thread
Code between interrupts executes atomically

void acquire(lock_t *l) {
disable_interrupts();

}

void release(lock_t *l) {
enable_interrupts();

}

Interrupting locks (disadvantages)

No support for locking multiple locks
Only works on uniprocessors (no support for locking across
cores in multicore system)
Process may keep lock for arbitrary length
Hardware interrupts may get lost (hardware only stores
information that interrupt X happened, not how many times it
happened)

Interrupting locks (perspective)

Interrupt-based locks are extremely simple
Work well for low-complexity code

Implementing locks through interrupts is great for MCUs

Interrupting locks (perspective)

Interrupt-based locks are extremely simple
Work well for low-complexity code

Implementing locks through interrupts is great for MCUs

(Faulty) spin lock

Use a shared variable to synchronize access to critical section

bool lock1 = false;

void acquire(bool *lock) {
while (*lock); /* spin until we grab the lock */
*lock = true;

}

void release(bool *lock) {
*lock = false

}

Bug: both threads can grab the lock if thread is preempted before
setting the lock but after the while loop completes.

(Faulty) spin lock

Use a shared variable to synchronize access to critical section

bool lock1 = false;

void acquire(bool *lock) {
while (*lock); /* spin until we grab the lock */
*lock = true;

}

void release(bool *lock) {
*lock = false

}

Bug: both threads can grab the lock if thread is preempted before
setting the lock but after the while loop completes.

Required hardware support

Locking requires an atomic test-and-set instruction.

int tas(int *addr, int val) {
int old = *addr;
*addr = val;
return old;

}

int tas(int *addr, int val) {
int old;
asm volatile("lock; xchgl %0, %1" :

"+m" (*addr), "=a" (old) :
"1" (val) : "cc");

return old;
}

Required hardware support

Locking requires an atomic test-and-set instruction.

int tas(int *addr, int val) {
int old = *addr;
*addr = val;
return old;

}

int tas(int *addr, int val) {
int old;
asm volatile("lock; xchgl %0, %1" :

"+m" (*addr), "=a" (old) :
"1" (val) : "cc");

return old;
}

Required hardware support

Hardware support is required for (i) an instruction that updates
memory location and returns old value and (ii) executes the
instruction atomically.
Directly encoding inline assembly is error prone, use intrinsics
instead:

type __sync_lock_test_and_set(type *ptr, type val);

Test-and-set spin lock

int lock1;

void acquire(int *l) {
while (__sync_lock_test_and_set(l, 1) == 1); /* spin */

}

void release(int *l) {
*l = 0;

}

acquire(&lock1);
critical_section();
release(&lock1);

Compare-and-swap spin lock

bool cas(T *ptr, T expt, T new) {
if (*ptr == expt) {

*ptr = new;
return true;

}
return false;

}

The function compares the value at *ptr and if it is equal to expt
then the value is overwritten with new. The function returns true if
the swap happened.

Compare-and-swap spin lock

__sync_bool_compare_and_swap(T *ptr, T expt, T new);

How would you implement the lock acquire operation?

void acquire_cas(bool *lck) {
while (__sync_bool_compare_and_swap(lck, false, true)

== false);
}

Compare-and-swap spin lock

__sync_bool_compare_and_swap(T *ptr, T expt, T new);

How would you implement the lock acquire operation?

void acquire_cas(bool *lck) {
while (__sync_bool_compare_and_swap(lck, false, true)

== false);
}

Spin lock: reduce spinning

A simple way to reduce the cost of spinning is to yield()
whenever lock acquisition fails

This is no longer a “strict” spin lock as we give up control to
the scheduler every loop iteration

void acquire(bool *lck) {
while (__sync_lock_test_and_set(l, 1) == 1) {

yield();
}

}

Lock requirements: spin locks

Correctness: mutual exclusion, progress, and, bounded
Mutual exclusion: ≤ one thread in critical section at a time
Progress (deadlock freedom): one waiting process will proceed
Bounded (no starvation): eventually each process will proceed

Fairness: each thread waits for the same amount of time
Performance: CPU is not used unecessarily

Spinlocks are unfair (threads race for lock) and hog performance
(spinning and burning CPU time)!

Lock requirements: spin locks

Correctness: mutual exclusion, progress, and, bounded
Mutual exclusion: ≤ one thread in critical section at a time
Progress (deadlock freedom): one waiting process will proceed
Bounded (no starvation): eventually each process will proceed

Fairness: each thread waits for the same amount of time
Performance: CPU is not used unecessarily

Spinlocks are unfair (threads race for lock) and hog performance
(spinning and burning CPU time)!

Queue lock

Idea: instead of spinning, put threads on a queue
Wake up thread(s) when lock is released

Wake up all threads to have them race for the lock
Selectively wake one thread up for fairness

Queue lock implementation: nptl
/* Bit 31 clear means unlocked; bit 31 set means locked.

Remaining bits encode num. interested threads. */
static inline void mutex_lock(int *mutex) {

int v;
/* Bit 31 was clear, we got the mutex. (fastpath). */
if (atomic_bit_test_set(mutex, 31) == 0) return;
atomic_increment(mutex);
while (1) {

if (atomic_bit_test_set(mutex, 31) == 0) {
atomic_decrement(mutex); return;

}
/* We have to wait. Make sure futex is act. locked */
v = *mutex;
if (v >= 0) continue;
futex_wait(mutex, v);

}
}

Queue lock implementation: nptl

static inline void mutex_unlock(int *mutex) {
/* Adding 0x80000000 to the counter results in 0 iff

there are no other waiting threads (fastpath). */
if (atomic_add_zero(mutex, 0x80000000)) return;

/* There are other threads waiting, wake one up. */
futex_wake(mutex, 1);

}

Do you want to know more? Check out the Linux futex system call.

https://linux.die.net/man/2/futex

Comparison spinlock / queue lock

Spinlock works well when critical section is short and rare and
we execute on more than one CPU (i.e., no context switch,
likely to acquire lock soon)
Queue locks work well when critical section is longer or more
frequent (i.e., high contention, likelihood that thread must
wait)

Hybrid approach: spin for a while, then yield and enqueue

Comparison spinlock / queue lock

Spinlock works well when critical section is short and rare and
we execute on more than one CPU (i.e., no context switch,
likely to acquire lock soon)
Queue locks work well when critical section is longer or more
frequent (i.e., high contention, likelihood that thread must
wait)

Hybrid approach: spin for a while, then yield and enqueue

Lock principles

Locks protect access to shared data structures
Shared kernel data structures rely on locks
Locking strategy: coarse-grained (one lock) versus fine-grained
(many locks)
OS only provides locks, locking strategy is up to programmer

Lock best practices

When acquiring a lock, recheck assumptions
Ensure that all shared information is refreshed (and not stale)
Multiple threads may wake up and race for the lock (i.e., loop
if unsuccessful)

Summary

Locks enforce mutual exclusion for critical section (i.e., an
object that can only be owned by a single thread)
Trade-offs between spinlock and queue lock

Time lock is held
Contention for lock
How many concurrent cores execute

Locking requires kernel support or atomic instructions
test-and-set atomically modifies the contents of a memory
location, returning its old value
compare-and-swap atomically compares the contents of a
memory location to a given value and, iff they are equal,
modifies the contents of that memory location to a given new
value.

