
Log-Structured File Systems
CSC 343, Operating Systems



Topics covered in this lecture

Log-structured file systems

This slide deck covers chapters 43 in OSTEP.



LFS: Log-structured File System

Motivation
Memory sizes were growing
Large gap between random IO and sequential IO performance
Existing file systems perform poorly on common workloads
File systems were not RAID-aware



Writing to Disk Sequentially
How do we transform all updates to file system state into a
series of sequential writes to disk?

Data update

Metadata needs to be updated too



Writing to Disk Sequentially and
Effectively

Writing single blocks sequentially does not guarantee efficient
writes

After writing into A0, next write to A1 will be delayed by disk
rotation

Write buffering for effectiveness
Keeps track of updates in memory buffer (also called segment)
Writes them to disk all at once, when it has sufficient number
of updates.



How Much to Buffer?

Each write to disk has fixed overhead of positioning
Time to write out D MB

Twrite = Tposition + D
Rpeak

where Tposition is positioning time and Rpeak is disk transfer rate.
To amortize the cost, how much should LFS buffer before
writing?

Effective rate of writing can be denoted as

Reffective = D
Twrite

= D
Tposition + D

Rpeak



How Much to Buffer?

Assume that Reffective = F × Rpeak , where F is a fraction of
peak rate, 0 < F < 1, then

Reffective = D
Tposition + D

Rpeak

= F × Rpeak

Solve for D

D = F
1− F × Rpeak × Tposition

If we want F to be 0.9 when Tposition = 10ms and
Rpeak = 100MB

s , then D = 9MB
That is, the segment size should be at least 9MB.



Finding Inodes in LFS

Inodes are scattered throughout the disk.

Solution is through indirection “Inode Map” (imap)

LFS places the chunks of the inode map right next to where it
is writing all of the other new information



The Checkpoint Region

How to find the inode map when it is spread across the disk?
The LFS has a fixed location on disk to begin a file lookup

The Checkpoint Region contains pointers to the latest of the
inode map

Only updated periodically (for example, every 30 seconds)



Reading a File from Disk

Read the checkpoint region

Read the entire inode map and cache it in memory

Read the most recent inode

Read a block from the file using direct or indirect pointers



What About Directories?

Directory structure of LFS is basically identical to classic UNIX
file systems

A directory is a file which data blocks consist of directory
information



Garbage Collection

LFS keeps writing newer version of file to new locations

LFS leaves the older versions of file structures all over the disk,
we call this garbage.



Examples: Garbage
For a file with a single data block

Overwrite the data block: both old data block and inode
become garbage

Append a block to that original file k: old inode becomes
garbage



Handling Older Versions of Inodes and
Data Blocks

One possibility: versioning file system
keep the older versions around
users can restore old file versions

LFS approach: garbage collection
keep only the latest live version and periodically clean old dead
versions
segment-by-segment basis

a block-by-block basis collector eventually makes free holes in
random locations so writes cannot be sequential



Determining Block Liveness

Segment summary block (SS)
Located in each segment
Inode number and offset for each data block are recorded

Determining Liveness
The block is live if the latest inode indicates the block

Version number can be used to determine liveness efficiently



Which Blocks to Clean and When?

When to clean
Periodically
During idle time
When the disk is full

Which blocks to clean
Segregate hot/cold segments

Hot segment: frequently overwritten
Cold segment: relatively stable

Collect cold segments sooner and hot segments later



Crash Recovery and the Log

Log organization in LFS
CR points to a head and tail segment
Each segment points to next segment

LFS can easily recover by simply reading the latest valid CR
The latest consistent snapshot may be quite old

Ensuring the atomicity of the CR
Keep two CRs
CR update protocol: timestamp → CR → timestamp

Roll forward
Start from end of log (pointed to by the latest CR)
Read next segments and adopt any valid updates to the file
system


