
Filesystem Journaling
CSC 343, Operating Systems



Topics covered in this lecture

Crash resistance
Journaling

This slide deck covers chapters 42 in OSTEP.



Last two weeks: API, abstractions, disk
layout

Highlevel API and abstractions
Filesystem API
Different names for different use cases

Inodes and devices
Path
File descriptor

Disk layout and inode/data block implementations



Recall atomic file update challenge

Assume you want to update important.txt atomically

If the application or the system crashes, the old version must
remain

Write data to ./gener8 > important.txt.tmp
Flush data to disk: fsync important.txt.tmp
Rename atomically: mv important.txt.tmp
important.txt, replacing it

What could still go wrong?

File system metadata may not be written back to disk!



Recall atomic file update challenge

Assume you want to update important.txt atomically

If the application or the system crashes, the old version must
remain

Write data to ./gener8 > important.txt.tmp
Flush data to disk: fsync important.txt.tmp
Rename atomically: mv important.txt.tmp
important.txt, replacing it

What could still go wrong?

File system metadata may not be written back to disk!



Recall atomic file update challenge

Assume you want to update important.txt atomically

If the application or the system crashes, the old version must
remain

Write data to ./gener8 > important.txt.tmp
Flush data to disk: fsync important.txt.tmp
Rename atomically: mv important.txt.tmp
important.txt, replacing it

What could still go wrong?

File system metadata may not be written back to disk!



Crash resistance

Power loss during writing
Mechanical failure
Magnetization failure
Mechanical destruction (link)

https://www.youtube.com/watch?v=-bpX8YvNg6Y&t=1815


Redundancy

Given A and B. If knowing A allows you to infer some or
all values of B then there is redundancy between A and B.

RAID1: mirrored disks (complete redundancy)
RAID5 or 6: parity blocks (partial redundancy)



Redundancy in a filesystem

Directory entries and inode table
Directory entries and inode link count
Data bitmap and inode pointers
Data bitmap and group descriptor (for sets of blocks)
Inode file size and inode/indirect pointers



Advantages of redundancy

Can improve reliability (recover from failures)
Can improve performance (easier to read file size from inode
than parsing the full structure)
Requires more storage (inefficient encoding)
Requires consistency (all sides must agree)



Consistency

Redundant data must be consistent to ensure correctness.
Otherwise functionality may break.

Keeping redundant data consistent is challenging
Filesystem may perform several writes to redundant blocks
The sequence of writes is not atomic
Interrupts due to power loss, kernel bugs, hardware failure



Consistency scenario (1/2)

Filesystem appends to a file
Must write to inode, data bitmap, data block
What happens if only some writes succeed?

001 Bitmap
010 Data
100 Inode
011 Bitmap and data
101 Bitmap and inode
110 Data and inode



Consistency scenario (2/2)

Filesystem appends to a file
Must write to inode, data bitmap, data block
What happens if only some writes succeed?

001 Bitmap: lost block
010 Data: lost data write (i.e., file is not updated)
100 Inode: references garbage (another file may use)
011 Bitmap and data: lost block
101 Bitmap and inode: reference garbage (from previous usage)
110 Data and inode: another file may grab the block

How would you order the writes?

Data (nothing bad happens), bitmap (lost block is detectable),
then inode



Consistency scenario (2/2)

Filesystem appends to a file
Must write to inode, data bitmap, data block
What happens if only some writes succeed?

001 Bitmap: lost block
010 Data: lost data write (i.e., file is not updated)
100 Inode: references garbage (another file may use)
011 Bitmap and data: lost block
101 Bitmap and inode: reference garbage (from previous usage)
110 Data and inode: another file may grab the block

How would you order the writes?

Data (nothing bad happens), bitmap (lost block is detectable),
then inode



Consistency through filesystem check
(1/3)

After a certain number of mount operations (remember the
mount count in the super block?) or after a crash, check the
consistency of the filesystem!
Hundreds of consistency checks across different fields

Do superblocks match?
Are all ‘.’ and ‘..’ linked correctly?
Are link counts equal to number of directory entries?
Do different inodes point to the same block?



Consistency through filesystem check
(2/3)

Q: Two directory entries point to the same inode, link count is
1

A: Update the link count to 2

Q: Inode link count is 1 but no directory links this file

A: Link the file in a lost+found directory

Q: A referenced block is marked as free in the bitmap

A: Update the bitmap to 1

Q: Two inodes reference the same data block

A: Make a copy of the data block

Q: An inode points to an inexistent block

A: Remove the reference



Consistency through filesystem check
(2/3)

Q: Two directory entries point to the same inode, link count is
1

A: Update the link count to 2

Q: Inode link count is 1 but no directory links this file

A: Link the file in a lost+found directory

Q: A referenced block is marked as free in the bitmap

A: Update the bitmap to 1

Q: Two inodes reference the same data block

A: Make a copy of the data block

Q: An inode points to an inexistent block

A: Remove the reference



Consistency through filesystem check
(2/3)

Q: Two directory entries point to the same inode, link count is
1

A: Update the link count to 2

Q: Inode link count is 1 but no directory links this file

A: Link the file in a lost+found directory

Q: A referenced block is marked as free in the bitmap

A: Update the bitmap to 1

Q: Two inodes reference the same data block

A: Make a copy of the data block

Q: An inode points to an inexistent block

A: Remove the reference



Consistency through filesystem check
(2/3)

Q: Two directory entries point to the same inode, link count is
1

A: Update the link count to 2

Q: Inode link count is 1 but no directory links this file

A: Link the file in a lost+found directory

Q: A referenced block is marked as free in the bitmap

A: Update the bitmap to 1

Q: Two inodes reference the same data block

A: Make a copy of the data block

Q: An inode points to an inexistent block

A: Remove the reference



Consistency through filesystem check
(2/3)

Q: Two directory entries point to the same inode, link count is
1

A: Update the link count to 2

Q: Inode link count is 1 but no directory links this file

A: Link the file in a lost+found directory

Q: A referenced block is marked as free in the bitmap

A: Update the bitmap to 1

Q: Two inodes reference the same data block

A: Make a copy of the data block

Q: An inode points to an inexistent block

A: Remove the reference



Consistency through filesystem check
(2/3)

Q: Two directory entries point to the same inode, link count is
1

A: Update the link count to 2

Q: Inode link count is 1 but no directory links this file

A: Link the file in a lost+found directory

Q: A referenced block is marked as free in the bitmap

A: Update the bitmap to 1

Q: Two inodes reference the same data block

A: Make a copy of the data block

Q: An inode points to an inexistent block

A: Remove the reference



Consistency through filesystem check
(2/3)

Q: Two directory entries point to the same inode, link count is
1

A: Update the link count to 2

Q: Inode link count is 1 but no directory links this file

A: Link the file in a lost+found directory

Q: A referenced block is marked as free in the bitmap

A: Update the bitmap to 1

Q: Two inodes reference the same data block

A: Make a copy of the data block

Q: An inode points to an inexistent block

A: Remove the reference



Consistency through filesystem check
(2/3)

Q: Two directory entries point to the same inode, link count is
1

A: Update the link count to 2

Q: Inode link count is 1 but no directory links this file

A: Link the file in a lost+found directory

Q: A referenced block is marked as free in the bitmap

A: Update the bitmap to 1

Q: Two inodes reference the same data block

A: Make a copy of the data block

Q: An inode points to an inexistent block

A: Remove the reference



Consistency through filesystem check
(2/3)

Q: Two directory entries point to the same inode, link count is
1

A: Update the link count to 2

Q: Inode link count is 1 but no directory links this file

A: Link the file in a lost+found directory

Q: A referenced block is marked as free in the bitmap

A: Update the bitmap to 1

Q: Two inodes reference the same data block

A: Make a copy of the data block

Q: An inode points to an inexistent block

A: Remove the reference



Consistency through filesystem check
(2/3)

Q: Two directory entries point to the same inode, link count is
1

A: Update the link count to 2

Q: Inode link count is 1 but no directory links this file

A: Link the file in a lost+found directory

Q: A referenced block is marked as free in the bitmap

A: Update the bitmap to 1

Q: Two inodes reference the same data block

A: Make a copy of the data block

Q: An inode points to an inexistent block

A: Remove the reference



Consistency through filesystem check
(3/3)

Are these operations correct?

The file system is inconsistent, so all we do is best effort!
It’s not obvious how to fix filesystem corruption
Correct state is unkown, just that it is inconsistent
FSCK is slow and may take hours (must read full disk)

Are there better approaches?



Consistency through filesystem check
(3/3)

Are these operations correct?

The file system is inconsistent, so all we do is best effort!
It’s not obvious how to fix filesystem corruption
Correct state is unkown, just that it is inconsistent
FSCK is slow and may take hours (must read full disk)

Are there better approaches?



Consistency through filesystem check
(3/3)

Are these operations correct?

The file system is inconsistent, so all we do is best effort!
It’s not obvious how to fix filesystem corruption
Correct state is unkown, just that it is inconsistent
FSCK is slow and may take hours (must read full disk)

Are there better approaches?



Consistency through journaling

Goal: limit the amount of required work after crash

Goal: get correct state, not just consistent state

Strategy: atomicity

Atomicity: being composed of indivisible units
Concurrency: operations in critical sections are not interrupted
Persistence: collections of writes are not interrupted by crashes
(i.e., either all new or all old data is visible)



Consistency versus correctness

Given: filesystem in state A, set of writes, resulting in state B
Assume it crashes somewhere between the writes from A to B

Filesystem check (FSCK) gives consistency
Atomicity gives A or B

consistent states

all states

empty
A B



Journaling strategy

Never delete (or overwrite) ANY old data until you have
received confirmation that ALL new data is committed

Add redundancy to fix the problem with redundancy



Journaling strategy (1/4)

Goal update file X with contents Y
Write Y, update metadata f(Y)

Classic strategy
Overwrite f(X) with f(Y), overwrite X with Y; or
Overwrite X with Y, overwrite f(X) with f(Y)
No matter the order, crash in the middle is bad!

Journaling strategy
Commit Y and f(Y) to journal
Update X with Y
Update f(X) with f(Y)
Delete journal entries
Resilient to crash in the middle, journal allows recovery



Journaling strategy (1/4)

Goal update file X with contents Y
Write Y, update metadata f(Y)

Classic strategy
Overwrite f(X) with f(Y), overwrite X with Y; or
Overwrite X with Y, overwrite f(X) with f(Y)
No matter the order, crash in the middle is bad!

Journaling strategy
Commit Y and f(Y) to journal
Update X with Y
Update f(X) with f(Y)
Delete journal entries
Resilient to crash in the middle, journal allows recovery



Journaling strategy (1/4)

Goal update file X with contents Y
Write Y, update metadata f(Y)

Classic strategy
Overwrite f(X) with f(Y), overwrite X with Y; or
Overwrite X with Y, overwrite f(X) with f(Y)
No matter the order, crash in the middle is bad!

Journaling strategy
Commit Y and f(Y) to journal
Update X with Y
Update f(X) with f(Y)
Delete journal entries
Resilient to crash in the middle, journal allows recovery



Journaling strategy (2/4)

Goal: write 10 to block 0 and 5 to block 1 atomically

Time Block 0 Block 1 Extra Extra Extra

0 12 3 0 0 0
1 10 3 0 0 0
2 10 5 0 0 0

This does not work! Must not crash between time 1 and 2!



Journaling strategy (2/4)

Goal: write 10 to block 0 and 5 to block 1 atomically

Time Block 0 Block 1 Extra Extra Extra

0 12 3 0 0 0
1 10 3 0 0 0
2 10 5 0 0 0

This does not work! Must not crash between time 1 and 2!



Journaling strategy (3/4)
Goal: write 10 to block 0 and 5 to block 1 atomically

Time Block 0 Block 1 Block 0’ Block 1’ Valid?

0 12 3 0 0 0
1 12 3 10 0 0
2 12 3 10 5 0
3 12 3 10 5 1
4 10 3 10 5 1
5 10 5 10 5 1
6 10 5 10 5 0

Crash before 3: old data
Crash after 3: new data (need recovery)
Crash after 6: new data



Journaling strategy (3/4)
Goal: write 10 to block 0 and 5 to block 1 atomically

Time Block 0 Block 1 Block 0’ Block 1’ Valid?

0 12 3 0 0 0
1 12 3 10 0 0
2 12 3 10 5 0
3 12 3 10 5 1
4 10 3 10 5 1
5 10 5 10 5 1
6 10 5 10 5 0

Crash before 3: old data
Crash after 3: new data (need recovery)
Crash after 6: new data



Journaling strategy (4/4)

// Pseudocode, assume we operate on blocks
void recovery() {

if (*valid == 1) {
*block0 = *block0p;
*block1 = *block1p;
*valid = 0;
fsync();

}
}



Journaling terminology

Extra blocks are called ‘journal’
Writes to the journal are a ‘journal transaction’
The valid bit is a ‘journal commit block’



Journal optimizations

Dedicated (small) journal area
Write barriers
Checksums
Circular journal
Logical journal
Ordered journal



Journal optimization: small journal

Allocating a shadow block per data block is wasteful
Recovery cost and lost storage

Dedicate a small area of blocks to the journal
Store block number along with data
At the start of the transaction, mark which blocks are modified
Store the data blocks in the journal
Commit the transaction



Journal optimization: small journal

Allocating a shadow block per data block is wasteful
Recovery cost and lost storage

Dedicate a small area of blocks to the journal
Store block number along with data
At the start of the transaction, mark which blocks are modified
Store the data blocks in the journal
Commit the transaction



Journal optimization: write barriers

Enforcing total write order is costly (remember seek cost?)
Idea: only wait until blocks of writes have completed

Wait before journal commit (journal data blocks were written)
Wait after journal commit (journal was committed)
Wait after data blocks are written (journal can be freed)



Journal optimization: checksums

Can we get rid of the write barrier after journal commit?
Idea: replace valid/invalid bit with checksum of written blocks

Checksum mismatch: one of the blocks was not written
Checksum match: all blocks were committed correctly

We now only have two write barriers for each transaction
After writing the journal (make sure data ended up in journal)
Before clearing the journal entry (data was written to disk)



Journal optimization: circular buffer

After data is written to journal, there is no rush to
update/write back

Journaled data can be recovered
Delay journaling for some time for better performance

Keep journal transactions in circular buffer
Flush when buffer space is used up



Journal optimization: logical journal

Appending a block to the file causes writes to the data block,
the inode, the data bitmap

Many small writes
Writing full blocks to journal is wasteful

Idea: keep track how data changed (diff between old and new)
Logical journals record changes to bytes, not blocks
Save lots of journal space
Must read original block during recovery



Journal optimization: ordered journal

How can we avoid writing all data twice?
Idea: store only metadata in journal

Write data to new block
Store updates to metadata in logical journal
Commit journal (and new data blocks)
Update metadata
Free journal



Summary

Crash resistance: filesystem check (FSCK)
Journaling: keep track of metadata, enforce atomicity

All modern filesystems use journaling
FSCK still useful due to bitflips/bugs


