
Filesystem API and interface
CSC 343, Operating Systems



Topics covered in this lecture

Filesystem API
Internal and external interface
Inodes and devices
File descriptors
File names

This slide deck covers chapters 39, 40 in OSTEP.



Purpose of a file system (1/2)

Given: set of persistent blocks from a storage device
Goal: manage these blocks efficiently. How?

Who has access?
What about initialization / bootstrapping?
Structural organization?

Manages data (mostly) on nonvolatile storage
Enables users to name and manipulate semi-permanent files
(select execeutables and their data)
Provide mechanisms to organize files and their metadata (e.g.,
owner, permissions, or type)



Purpose of a file system (1/2)

Given: set of persistent blocks from a storage device
Goal: manage these blocks efficiently. How?

Who has access?
What about initialization / bootstrapping?
Structural organization?

Manages data (mostly) on nonvolatile storage
Enables users to name and manipulate semi-permanent files
(select execeutables and their data)
Provide mechanisms to organize files and their metadata (e.g.,
owner, permissions, or type)



Purpose of a file system (2/2)

Map bytes on disk to “file”
Share files (concurrently?) among users and processes

Decide on locking granularity and binding operations
Semantics of operations like truncating in a shared world

File caching: metadata and contents



The file abstraction

A file is a linear persistent array of bytes
Data operations: read or write
Metadata operations: create, delete, modify
permissions/user/. . .

Directory contains subdirectories
List of directories, files, inode mappings



The file abstraction

Different perspectives
File name (human readable)
Inode and device number (persistent ID)
File descriptor (process view)



The I/O hierarchy

File Naming

Directory Access

File Access

Disk Device Driver

Disk Hardware

Each level adds functionality (and complexity)



Different functionality

Naming
specifies name syntax and encoding
e.g., a URL; may be aware if a file is local/remote

Directory access
map name to file object
resolve a string to an object

File access
concerns file operations
e.g., create/delete/read/write



Different file philosophies

Typed files: associate structure
System defines all possible file types (e.g., text document,
source file, html file)
File type set at creation, file type specifies operations

Untyped files: array of bytes
File is a sequence of bytes
System does neither understand nor care about contents
File operations apply to all files

Modern systems settled on untyped files.
Each file now has attributes or even extended attributes.

executable, append only, COW etc.
check manpage for chattr



Different file philosophies

Typed files: associate structure
System defines all possible file types (e.g., text document,
source file, html file)
File type set at creation, file type specifies operations

Untyped files: array of bytes
File is a sequence of bytes
System does neither understand nor care about contents
File operations apply to all files

Modern systems settled on untyped files.
Each file now has attributes or even extended attributes.

executable, append only, COW etc.
check manpage for chattr



Desired file operations

create: create a new file
unlink: remove/destroy a file
open: map a path to a file identifier
close: close a file identifier
read: read from the current file position
write: write to the current file position
seek: modify the file position
control: various control operations such as changing
permissions or user
createdir: create a new directory
rmdir: remove a directory
readdir: return all files in a directory



Desired cost of file operations

Sequential read/write is common
Design goal: O(size of transfer)

Random access (seeking) is infrequent
Design goal: O(log file length)

Constraints and observations
Many files are small
A few files are large
Most access is sequential, few accesses are at random positions

Ideas for a clever data structure?



Desired cost of file operations

Sequential read/write is common
Design goal: O(size of transfer)

Random access (seeking) is infrequent
Design goal: O(log file length)

Constraints and observations
Many files are small
A few files are large
Most access is sequential, few accesses are at random positions

Ideas for a clever data structure?



The 3 views of a file

Operating system: Inode and device id
Ids are unique and great and unambiguous

User: file name
Process: File descriptor



Managing files: inodes

An inode contains metadata of a file
Each file has exactly one associated inode
Each inode is unique on a filesystem (not globally!)
Inodes are recycled after reuse

Note: multiple file names may map to the same inode
see “hard links”



Managing files: inodes

An inode contains metadata of a file
Each file has exactly one associated inode
Each inode is unique on a filesystem (not globally!)
Inodes are recycled after reuse

Note: multiple file names may map to the same inode
see “hard links”



Table of inodes (1/2)

0
location
size=18

1
location
size

2
location
size=12

3
location
size=12

Metadata

data F1

data F2

data F3



Table of inodes (2/2)

Storage space is split into inode table and data storage
Initial prototypes used static sized table and data storage

Files are statically allocated
Need to remember inode number to access file content

Idea: Use a dedicated place at the beginning of the storage
medium, mostly initial blocks on the storage medium

A dedicated special file to store a mapping from file names to
inodes



Table of inodes (2/2)

Storage space is split into inode table and data storage
Initial prototypes used static sized table and data storage

Files are statically allocated
Need to remember inode number to access file content

Idea: Use a dedicated place at the beginning of the storage
medium, mostly initial blocks on the storage medium

A dedicated special file to store a mapping from file names to
inodes



The 3 views of a file

Operating system: Inode and device id
User: file name

Humans are better at remembering names than numbers
Process: File descriptor



From path to inode (1/2)

0
location
size=18

1
location
size

2
location
size=12

3
location
size=12

Metadata

’tmp’: 2, ’etc’: 15, ...

’test.txt’: 3

’Hello World!’



From path to inode (2/2)

A special file stores mapping between file names and inodes
Extend to hierarchy: mark if a file name maps to a regular file
or a directory

Access to ‘/tmp/test.txt’ in 3 steps: ‘tmp’, ‘test.txt’, contents
What data should you store in the directory file (compared to
the inode)?



Special directory entries: . and ..

$ ls -al
drwxr-xr-x 6 bob bob 4096 Nov 15 13:38 .
drwxr-xr-x 5 bob bob 4096 Nov 1 13:52 ..
-rw-r--r-- 1 bob bob 6830 Nov 1 13:52 00-intro.md
-rw-r--r-- 1 bob bob 16726 Nov 1 13:52 11-proc.md
-rw-r--r-- 1 bob bob 19316 Nov 1 13:52 12-sched.md
-rw-r--r-- 1 bob bob 14048 Nov 1 13:52 13-seg.md
-rw-r--r-- 1 bob bob 17495 Nov 1 13:52 14-pg.md
-rw-r--r-- 1 bob bob 3603 Nov 1 13:52 15-virt.md

‘.” maps to the current, ‘..” maps to the next higher
directory



The 3 views of a file

Operating system: Inode and device id
User: file name
Process: File descriptor

Keeps track of per-process state (e.g., read position or name,
inode mapping)



File descriptor (1/4)

The combination of file names and inode/device id are
sufficient to implement persistent storage

Drawback: constant lookups from file name to inode/device id
are costly

Idea: do expensive tree traversal once, store final inode/device
number in a per-process table

Also keep additional information such as file offset
Per process table of open files
Use linear numbers (fd 0, 1, 2, . . . ), reuse when freed



File descriptor (1/4)

The combination of file names and inode/device id are
sufficient to implement persistent storage

Drawback: constant lookups from file name to inode/device id
are costly

Idea: do expensive tree traversal once, store final inode/device
number in a per-process table

Also keep additional information such as file offset
Per process table of open files
Use linear numbers (fd 0, 1, 2, . . . ), reuse when freed



File descriptor (1/4)

The combination of file names and inode/device id are
sufficient to implement persistent storage

Drawback: constant lookups from file name to inode/device id
are costly

Idea: do expensive tree traversal once, store final inode/device
number in a per-process table

Also keep additional information such as file offset
Per process table of open files
Use linear numbers (fd 0, 1, 2, . . . ), reuse when freed



File descriptor (2/4)

fd table
0
1
2
3
4
5

offset=23
inode=X
device=Y

location=A
size=B

int fd1 = open("file.txt"); // returns 3
read(fd1, buf, 23);



File descriptor (3/4)

fd table
0
1
2
3
4
5

offset=23
inode=X
device=Y

location=A
size=Boffset=0

inode=X
device=Y

int fd1 = open("file.txt"); // returns 3
read(fd1, buf, 23);
int fd2 = open("file.txt"); // returns 4



File descriptor (4/4)

fd table
0
1
2
3
4
5

offset=23
inode=X
device=Y

location=A
size=Boffset=0

inode=X
device=Y

int fd1 = open("file.txt"); // returns 3
read(fd1, buf, 23);
int fd2 = open("file.txt"); // returns 4
int fd3 = dup(fd2); // returns 5



File API

int open(char *path, int flag, mode_t mode)
size_t read(int fd, char *buf, size_t nbyte)
size_t write(int fd, char *buf, size_t nbyte)
int close(int fd)

Open translates a string name to an inode. OS allocates a file
descriptor that points to that inode and returns the file descriptor
table index. The path is only traversed once, the OS can cache
inodes and each process keeps track of its open files.



File API: deletion

There is no system call to delete files!
Inodes are marked free if there are no more references to them
(that’s why they have a reference count)
unlink() removes a file from a directory and reduces the
reference count
File descriptors are freed upon close() or when the process
exits

Note, some programs create a temporary file, keep the file descriptor
but unlink the file from the directory right after creation. This
results in a private temporary file that is recycled when the process
exits.



Sharing and concurrency is hard!

Consider file permissions change after file is opened
Consider a file is moved after it is opened
Consider a file is deleted after it is opened
Consider file owner changes after it is opened
A process forks, what happens to open files (e.g., read
positions)
What happens when two processes write to the same file?
. . .



The curious case of temp files

int main(int argc, char* argv[]) {
int fd = open("test", O_CREAT | O_RDWR, 0600);
// unlink("test"); <- what happens to fd here?
char *data = "test";
char rdata[64];
write(fd, data, strlen(data));
sleep(10);
lseek(fd, 0, SEEK_SET);
read(fd, &rdata, 64);
rdata[63] = 0;
printf("We read '%s'\n", rdata);
close(fd);
return 0;

}



Multiple file systems (1/3)

Challenge: on a single system there are often multiple
filesystems

Different partitions on the same disk
Multiple disks
DVD/BlueRay drive
USB stick
Network Attached Storage
Floppy disk

How do you organize, manage, and display all these file
systems?



Multiple file systems: Windows (2/3)

Figure 1: All file systems are mapped to a common root

Assign a letter to each file system
A, B for floppy disks
C for main hard drive
. . .



Multiple file systems: Unix (3/3)

/

bin

ls bash ...

etc

bashrc ...

home

bob ...

File systems can be mapped anywhere into a single tree
Any directory can be a mount point
Mounting a FS hides the files in the original directory
E.g., "home/* may be a different file system



Hard links and soft links

Links are file pointers, i.e., they do not contain data themselves
but reference another file
Soft link: a directory entry points to a file that contains a file
name, the OS resolves the file name when it is accessed
Hard link: a directory that points to an existing file, increasing
the reference counter

This is why the inode does not store the file name



Summary

Filesystem API: handle interaction with the file system
Internal and external interface

Internal: data structures handle large chunk of blocks
External: standardized interface

Three ways to identify a file
File names (for humans)
Inodes and devices (on the disk)
File descriptors (for a process)

Combine multiple file systems
Mount at the root (Windows)
Mount anywhere in the tree (Unix)


