
Filesystem Implementation
CSC 343, Operating Systems

Topics covered in this lecture

Filesystem implementation
Special requirements (write back)

This slide deck covers chapters 40, 41 in OSTEP.

Last week: API and abstractions

Highlevel API and abstractions
Filesystem API
Different names for different use cases

Inodes and devices
Path
File descriptor

Different names for different use cases

inode/device id (53135/2)
Unique internal name
Records metadata about the file (size, permissions, owner)

path (/foo/bar/baz)
Human readable name
Organizes files in a hierarchical layout

file descriptor (5)
Process internal view
Avoids frequent path to inode traversal
Remembers offset for next read/write

Common file API

int open(char *path, int flag, mode_t mode)
size_t read(int fd, char *buf, size_t nbyte)
size_t write(int fd, char *buf, size_t nbyte)
int close(int fd)

What kind of on disk data structures do we need? How is data
accessed?

Virtual File System

File systems (EXT4, NTFS, FAT) use different data structures
A Virtual File System (VFS) abstracts from the real filesystem
VFS abstracts the FS as objects with specific operations

Superblock (mount): a life filesystem
File (open): a file opened by a process (“open file description”)
Directory entry cache: speeds up path to inode translation
Inode (lookup): a filesystem object (e.g., file or directory)

System call logic (open, seek, . . .) maps to VFS operations
When implementing a new FS, implement the VFS API
System calls are now independent of FS implementation

Challenge: renaming files

How would you implement rename?

Renaming only changes the name of the file
Directory contains the name of the file
No data needs to be moved, inode remains unchanged

Note, you may need to move the data if it is on another
disk/partition!

Challenge: renaming files

How would you implement rename?

Renaming only changes the name of the file
Directory contains the name of the file
No data needs to be moved, inode remains unchanged

Note, you may need to move the data if it is on another
disk/partition!

Challenge: renaming files

How would you implement rename?

Renaming only changes the name of the file
Directory contains the name of the file
No data needs to be moved, inode remains unchanged

Note, you may need to move the data if it is on another
disk/partition!

Filesystem implementation

A filesystem is an exercise in data management
Given: a large set (N) of blocks
Need: data structures to encode (1) file hierarchy and (2) per
file metadata

Overhead (metadata size versus file data) should be low
Internal fragmentation should be low
File contents must be accessed efficiently (external
fragmentation, number of metadata accesses)
Define operations for file API

Many different choices are possible!
Similar to virtual memory!
Software implementation enables experimentation with
strategies

Filesystem implementation

A filesystem is an exercise in data management
Given: a large set (N) of blocks
Need: data structures to encode (1) file hierarchy and (2) per
file metadata

Overhead (metadata size versus file data) should be low
Internal fragmentation should be low
File contents must be accessed efficiently (external
fragmentation, number of metadata accesses)
Define operations for file API

Many different choices are possible!
Similar to virtual memory!
Software implementation enables experimentation with
strategies

Allocating file data

Contiguous
Linked blocks (blocks end with a next pointer)
File-allocation tables (table that contains block references)
Indexed (inode contains data pointers)
Multi-level indexed (tree of pointers)

For each approach, think about fragmentation, ability to
grow/shrink files, sequential access performance, random access
performance, overhead of meta data.

File allocation: contiguous

Each file is allocated contiguously

A A A B B

Terrible external fragmentation (OS must anticipate)
Likely unable to grow file
Excellent read and seek performance
Small overhead for metadata

Great for read-only file systems (CD/DVD/BlueRay)

File allocation: contiguous

Each file is allocated contiguously

A A A B B

Terrible external fragmentation (OS must anticipate)
Likely unable to grow file
Excellent read and seek performance
Small overhead for metadata

Great for read-only file systems (CD/DVD/BlueRay)

File allocation: contiguous

Each file is allocated contiguously

A A A B B

Terrible external fragmentation (OS must anticipate)
Likely unable to grow file
Excellent read and seek performance
Small overhead for metadata

Great for read-only file systems (CD/DVD/BlueRay)

File allocation: linked blocks

Each file consists of a linked list of blocks

A A B B A

No external fragmentation
Files can grow easily
Reasonable read cost (depending on layout), high seek cost
One pointer per block metadata overhead

File allocation: linked blocks

Each file consists of a linked list of blocks

A A B B A

No external fragmentation
Files can grow easily
Reasonable read cost (depending on layout), high seek cost
One pointer per block metadata overhead

File allocation: File Allocation Table
(FAT)

Idea: keep linked list information in a single table. Instead of storing
the next pointer at the end of the block, store all next pointers in a
central table

A A B B A
-1 -1 3 7 0 -1 4 0 -1 -1 Block pointer

0 1 2 3 4 5 6 7 8 9 Block number

No external fragmentation
Files can grow easily
Reasonable read and seek cost
One pointer per block metadata overhead

File allocation: File Allocation Table
(FAT)

Idea: keep linked list information in a single table. Instead of storing
the next pointer at the end of the block, store all next pointers in a
central table

A A B B A
-1 -1 3 7 0 -1 4 0 -1 -1 Block pointer

0 1 2 3 4 5 6 7 8 9 Block number

No external fragmentation
Files can grow easily
Reasonable read and seek cost
One pointer per block metadata overhead

File allocation: indexed

Idea: metadata contains an array of block pointers

A A B B A
0 1 2 3 4 5 6 7 8 9 Block number

File A: 2, 3, 7, -1

File B: 6, 4, -1, -1

No external fragmentation
Files can grow easily up to maximum size
Reasonable read and low seek cost
Large metadata overhead (wastes space as most files are small)

File allocation: indexed

Idea: metadata contains an array of block pointers

A A B B A
0 1 2 3 4 5 6 7 8 9 Block number

File A: 2, 3, 7, -1

File B: 6, 4, -1, -1

No external fragmentation
Files can grow easily up to maximum size
Reasonable read and low seek cost
Large metadata overhead (wastes space as most files are small)

File allocation: multi-level indexing (1/3)

Idea: have a mix of direct, indirect, double indirect, and triple
indirect pointers

I D T

triple indirect

File allocation: multi-level indexing (2/3)
Idea: have a mix of direct, indirect, double indirect, and triple
indirect pointers

struct inode {
umode_t i_mode;
unsigned short i_opflags;
kuid_t i_uid;
kgid_t i_gid;
unsigned int i_flags;
...
// direct pointers to data blocks
struct dblock *direct[10];
// block of N ptrs to data blocks
struct dblock **dindirect;
// block of N ptrs to each N ptrs to data blocks
struct dblock ***tindirect;

};

File allocation: multi-level indexing (3/3)

Idea: have a mix of direct, indirect, double indirect, and triple
indirect pointers

No external fragmentation
Files can grow easily up to maximum size
Reasonable read and low seek cost
Low metadata overhead but needs extra reads for
indirect/double indirect access

Simple FS

S i d I I I I ID D D D D D D D D

Superblock (S): file system metadata
Bitmaps (i, d): indicates free blocks
Inodes (I): hold file/directory metadata, reference data blocks
Data blocks (D): file contents, referenced by an inode

The inode size may be different (smaller) from the data block size.

Simple FS: superblock

The superblock stores the characteristics of the filesystem
What do you store in the superblock?

Magic number and revision level
Mount count and maximum mount count
Block size of the filesystem (1, 2, 4, 8, 16, 32, 64K for ext4)
Name of the filesystem
Number of inodes/data blocks
Number of free inodes/data blocks
Number of “first” inode (i.e., root directory)

Simple FS: superblock

The superblock stores the characteristics of the filesystem
What do you store in the superblock?

Magic number and revision level
Mount count and maximum mount count
Block size of the filesystem (1, 2, 4, 8, 16, 32, 64K for ext4)
Name of the filesystem
Number of inodes/data blocks
Number of free inodes/data blocks
Number of “first” inode (i.e., root directory)

Simple FS: inode

The inode stores all file metadata
What would you store in an inode?

File type
File uid, gid
File permissions (for user, group, others)
Size
Access time
Create time
Number of links

Simple FS: inode

The inode stores all file metadata
What would you store in an inode?

File type
File uid, gid
File permissions (for user, group, others)
Size
Access time
Create time
Number of links

Maximum file size

Maximum file size is related to
Block size
Number of direct inodes
Number of indirect inodes
Number of double indirect inodes
Number of triple indirect inodes

blocksize * (direct + inodeblock + inodeblockˆ2 +
inodeblockˆ3)

Directories

Directories are special files (inode->type)
Store a set of file name to inode mappings
Special entries . for current directory and .. for parent
directory

File operation: create /foo/bar

Read root inode (locate directory data)
Read root data (read directory)
Read foo inode (locate directory data)
Read foo data (read directory)
Read/write inode bitmap (allocate inode)
Write foo data (add file name)
Read/write bar inode (create file)
Write foo inode (update date, maybe allocate data block)

File operation: open /foo/bar

Read root inode (locate directory data)
Read root data (read directory)
Read foo inode (locate directory data)
Read foo data (read directory)
Read bar inode (read file metadata)

File operation: write to /foo/bar

First: open("/foo/bar")
Read bar inode (read file metadata)
Read/write data bitmap (allocate data blocks)
Write bar data (write data)
Write bar inode (update inode)

File operation: read from /foo/bar

First: open("/foo/bar")
Read bar inode (read file metadata)
Read bar data (read data)
Write bar inode (update time)

File operation: close /foo/bar

No disk I/O

File operation: observations

Path traversal and translation is costly
Reduce number of lookups (file descriptors!)
Introduce caching (dcache)

Lookup aside, operations are cheap and local

Summary

Filesystem implementation
Inodes for metadata
Bitmaps for inodes/data blocks
Superblock for global metadata

