
Drivers and IO
CSC 343, Operating Systems



Persistence

Vi
rt
ua
liz
at
io
n

Co
nc
ur
re
nc
y

Pe
rs
ist
en
ce

Security



Topics covered in this lecture

How does the OS interact with devices
Design of device drivers
Types of IO devices
Components of hard drives
Calculating hard drive throughput
Scheduling algorithms for IO

This slide deck covers chapters 36, 37 in OSTEP.



Motivation

So far we have talked about the CPU and about RAM

How do we get data into RAM?
Load programs and data from storage
Read and write packets from the network (maybe even
streams?)
Write data to a terminal or the screen
Read data from input devices such as keyboard/mouse/camera

Devices provide input/output (IO) to a system

IO allows information to persist (RAM is volatile)!

Enables interesting computation!



Ancient device history

Each device (not type!) had a unique hardware interface
Applications contained code to communicate with devices
Application polled device to set/get information



Modern device interface

The OS handles device management (and access)
OS exposes a uniform interface to applications
IO is interrupt driven



Hardware support for devices: Northbridge

CPU RAM

Northbridge, ~19,600 MB/s
memory bus / PCI-E

GPU

What about other devices?



Hardware support for devices: Southbridge

CPU RAM

Northbridge, ~19,600 MB/s
memory bus / PCI-E

GPU

Southbridge ~4,000 MB/s
I/O bus (e.g., PCI)

PCI Dev

What about “slow” IO?



Hardware support for devices: Other IO

CPU RAM

Northbridge, ~19,600 MB/s
memory bus / PCI-E

GPU

Southbridge ~4,000 MB/s
I/O bus (e.g., PCI)

PCI Dev

Peripheral I/O bus, ~2,000 MB/s
(e.g., SATA, USB)

HDD Cam WiFi



Terminology

Northbridge is also called memory controller hub
Southbridge is also called I/O Controller Hub (ICH / Intel) or
Fusion Controller Hub (FCH / AMD)
The southbridge is connected to the CPU through the
northbridge which has a direct connection

But how do devices work?



Terminology

Northbridge is also called memory controller hub
Southbridge is also called I/O Controller Hub (ICH / Intel) or
Fusion Controller Hub (FCH / AMD)
The southbridge is connected to the CPU through the
northbridge which has a direct connection

But how do devices work?



Canonical device (1/2)

Status CMD DTA (Device registers)

(Device internals)

OS writes device registers (by executing CPU instructions)
Device internals are hidden (abstraction)



Canonical device (2/2)

Status CMD DTA (Device registers)

Microcontroller (CPU+RAM)

Storage (ROM/Flash)

Special purpose chips

(Device internals)

OS communicates based on agreed protocol (through “driver”)
Device signals OS through memory or interrupt



Device protocol (1/3)

while (STATUS == BUSY) ; // 1. spin
// 2. Write data to DTA register
*dtaRegister = DATA;
// 3. Write command to CMD register
*cmdRegister = COMMAND;
while (STATUS == BUSY) ; // 4. spin

Wait until device is ready
Set data and command (why send data first?)
Wait until command has completed

Where do you see problems?



Device protocol (1/3)

while (STATUS == BUSY) ; // 1. spin
// 2. Write data to DTA register
*dtaRegister = DATA;
// 3. Write command to CMD register
*cmdRegister = COMMAND;
while (STATUS == BUSY) ; // 4. spin

Wait until device is ready
Set data and command (why send data first?)
Wait until command has completed

Where do you see problems?



Device protocol (2/3)

1 2
3

4

A BCPU

C ADisk

Busy waiting (1. and 4.) wastes cycles twice
CPU should not need to wait for completion of command
Solution: embrace asynchronous communication

Inform device of request (to get rid of 1.)
Wait for signal of completion (to get rid of 4.)



Device protocol (2/3)

1 2
3

4

A BCPU

C ADisk

Busy waiting (1. and 4.) wastes cycles twice
CPU should not need to wait for completion of command
Solution: embrace asynchronous communication

Inform device of request (to get rid of 1.)
Wait for signal of completion (to get rid of 4.)



Device protocol (3/3): interrupts

1
2
3 4

A B A B ACPU

C ADisk

Instead of spinning, the OS (driver) waits for an interrupt
Interrupts are handled centrally through a dispatcher
On interrupt arrival, wake up kernel thread that waits on that
interrupt



Interrupt performance

Can interrupts lead to worse performance than polling?

Yes: livelock (e.g., a flood of arriving network packets)
A livelock is similar to a deadlock (no process makes progress,
resulting in starvation) with the difference that the states of the
processes constantly change
For example: network packets arrive; interrupt handling and
context switch is costly, prohibiting the application from
reacting to the packets and them simply queuing up.

Real systems therefore use a mix between polling and interrupts
Interrupts allow overlap between computation and IO, most
useful for slow devices;
Use polling for short bursts or small amounts of data

Another optimization is coalescing, i.e., the device waits for a
bit until more requests complete, then batch sends everything.



Interrupt performance

Can interrupts lead to worse performance than polling?

Yes: livelock (e.g., a flood of arriving network packets)
A livelock is similar to a deadlock (no process makes progress,
resulting in starvation) with the difference that the states of the
processes constantly change
For example: network packets arrive; interrupt handling and
context switch is costly, prohibiting the application from
reacting to the packets and them simply queuing up.

Real systems therefore use a mix between polling and interrupts
Interrupts allow overlap between computation and IO, most
useful for slow devices;
Use polling for short bursts or small amounts of data

Another optimization is coalescing, i.e., the device waits for a
bit until more requests complete, then batch sends everything.



Interrupt performance

Can interrupts lead to worse performance than polling?

Yes: livelock (e.g., a flood of arriving network packets)
A livelock is similar to a deadlock (no process makes progress,
resulting in starvation) with the difference that the states of the
processes constantly change
For example: network packets arrive; interrupt handling and
context switch is costly, prohibiting the application from
reacting to the packets and them simply queuing up.

Real systems therefore use a mix between polling and interrupts
Interrupts allow overlap between computation and IO, most
useful for slow devices;
Use polling for short bursts or small amounts of data

Another optimization is coalescing, i.e., the device waits for a
bit until more requests complete, then batch sends everything.



Optimize data transfer

1
2
3 4

A B A B ACPU

C ADisk

PIO (Programmed IO): CPU tells the device what data
One instruction for each byte/word
Efficient for a few bytes, scales terribly

DMA (Direct Memory Access): tell device where data is
One instruction to send a pointer
Efficient for large data transfers



Optimize data transfer

1
2
3 4

A B A B ACPU

C ADisk

PIO (Programmed IO): CPU tells the device what data
One instruction for each byte/word
Efficient for a few bytes, scales terribly

DMA (Direct Memory Access): tell device where data is
One instruction to send a pointer
Efficient for large data transfers



How to transfer data?

IO ports
Each device has an assigned IO port
Special instructions (in/out on x86) communicate with device

Memory mapped IO
Device maps its registers to memory
Loads/stores interact with device

Both are used in practice. Architectures now support both.
Differences are a matter of choice and preference.



How to transfer data?

IO ports
Each device has an assigned IO port
Special instructions (in/out on x86) communicate with device

Memory mapped IO
Device maps its registers to memory
Loads/stores interact with device

Both are used in practice. Architectures now support both.
Differences are a matter of choice and preference.



Support for different devices

Challenge: different devices have different protocols
Drivers are specialized pieces of code for a particular device

Low end communicates with the device
High end exposes generic interface to OS

Drivers are an example of encapsulation
Different drivers adhere to the same API
OS only implements support for APIs based on device class

Requirement: well-designed interface/API
Trade-off between versatility and over-specialization
Due to device class complexity, OS ends with layers of APIs



Support for different devices

Challenge: different devices have different protocols
Drivers are specialized pieces of code for a particular device

Low end communicates with the device
High end exposes generic interface to OS

Drivers are an example of encapsulation
Different drivers adhere to the same API
OS only implements support for APIs based on device class

Requirement: well-designed interface/API
Trade-off between versatility and over-specialization
Due to device class complexity, OS ends with layers of APIs



Complexity of API layers

Figure 1: File system stack



IO subsystem: hard disks

Disk has a sector-addressable address space
Sectors are 512 or 4096 bytes
Main operations: read/write



Hard disk

A

IO cost is sum of:
seek time (adjust angle of reader)
rotation time (rotate the start of the sector to the reader)
transfer time (rotate sector under reader)



Disc drives

A

Open hard drive spinning up
How floppy drives work
Alternate use for floppy drives

https://www.youtube.com/watch?v=zMpa4h_SRmI
https://www.youtube.com/watch?v=EHRc-QMoUE4
https://www.youtube.com/watch?v=Oym7B7YidKs


HDD: seek, rotate, transfer

Seek is costly (several ms, “an eternity”)
function of cylinder distance
operations: accelerate, coast, decelerate, settle

Rotate: 7200 RPM, 8.3 ms/rotation
Transfer: (100MB/s): 5 us for 512 B

Seeks and rotation is slow, transfer is fast
Sequential access is much faster (blocks are ordered)
Random access is slow



HDD: seek, rotate, transfer

Seek is costly (several ms, “an eternity”)
function of cylinder distance
operations: accelerate, coast, decelerate, settle

Rotate: 7200 RPM, 8.3 ms/rotation
Transfer: (100MB/s): 5 us for 512 B

Seeks and rotation is slow, transfer is fast
Sequential access is much faster (blocks are ordered)
Random access is slow



IO scheduling

Given concurrent IO requests, how should they be scheduled?
Different constraints than CPU scheduling
. . . but the same algorithms!

Position of disk head relative to requested position matters
more than length of the transfer



IO scheduling

Given concurrent IO requests, how should they be scheduled?
Different constraints than CPU scheduling
. . . but the same algorithms!

Position of disk head relative to requested position matters
more than length of the transfer



Optimization: buffering

A buffer cache between the disk and the higher level of the OS
keeps most recently used disk blocks around
Proactively fetches blocks that are likely accessed
Keep track of dirty blocks that need to be written back



First come first serve

Assume 10ms average seek and rotation time
Requests: 30001, 70001, 30002, 70002, 30003, 70003: 60ms

How can we improve?

Requests: 30001, 30002, 30003, 70001, 70002, 70003: 20ms
Shortest seek time: seek to closest block (minding starvation)
Elevator/SCAN: go outwards/inwards, serve requests along
Clever optimizations of shortest seek time/elevator



First come first serve

Assume 10ms average seek and rotation time
Requests: 30001, 70001, 30002, 70002, 30003, 70003: 60ms

How can we improve?

Requests: 30001, 30002, 30003, 70001, 70002, 70003: 20ms
Shortest seek time: seek to closest block (minding starvation)
Elevator/SCAN: go outwards/inwards, serve requests along
Clever optimizations of shortest seek time/elevator



Completely fair queuing (Linux)

Queue for each process
Weighted round-robin between queues with slice-time
proportional to priority
Yield slice only if idle for given time

Scheduling algorithms for CPU time are also useful for I/O



Completely fair queuing (Linux)

Queue for each process
Weighted round-robin between queues with slice-time
proportional to priority
Yield slice only if idle for given time

Scheduling algorithms for CPU time are also useful for I/O



Going beyond one disk

A single disk has many limitations
Single point of failure
Limited performance
Limited size

File systems work on a single disk (or partition)
How can we increase flexibility?

One more layer of indirection: a virtual disk!



Going beyond one disk

A single disk has many limitations
Single point of failure
Limited performance
Limited size

File systems work on a single disk (or partition)
How can we increase flexibility?

One more layer of indirection: a virtual disk!



RAID: Redundant Array of Inexpensive
Disks

Idea: build logical disk from (many) physical disks

RAID0: Striping (no mirroring or parity)
n performance, n capacity, 0/n can fail

RAID1: Data mirroring (no parity or striping)
n performance, (n-1)/n can fail

RAID2: bit level striping (historic, sync’d, one parity drive)
RAID3: byte level striping (historic, sync’d, one parity drive)
RAID4: block level striping (historic, one drive holds parity)
RAID5: block level striping, distributed parity

n performance, n-1 capacity, 1/n can fail
RAID6: block level striping, distributed parity

n performance, n-2 capacity, 2/n can fail



RAID: Redundant Array of Inexpensive
Disks

Idea: build logical disk from (many) physical disks

RAID0: Striping (no mirroring or parity)
n performance, n capacity, 0/n can fail

RAID1: Data mirroring (no parity or striping)
n performance, (n-1)/n can fail

RAID2: bit level striping (historic, sync’d, one parity drive)
RAID3: byte level striping (historic, sync’d, one parity drive)
RAID4: block level striping (historic, one drive holds parity)
RAID5: block level striping, distributed parity

n performance, n-1 capacity, 1/n can fail
RAID6: block level striping, distributed parity

n performance, n-2 capacity, 2/n can fail



RAID: combinations

RAID 01: two stripes (RAID0) that are mirrored (RAID1)
RAID 10: stripe (RAID0) a set of mirrored devices (RAID1)
Which one is more reliable?



RAID 01

RAID 1

RAID 0

D0 D1 D2

RAID 0

D3 D4 D5

During rebuild (a disk has failed), no other drive from the
alternate group may fail
Given D0 fails, if any of D3, D4, or D5 fails the system halts
(3/5)
Given D0 fails, if D3 fails the system is dead (1/5)



RAID 01

RAID 1

RAID 0

D0 D1 D2

RAID 0

D3 D4 D5

During rebuild (a disk has failed), no other drive from the
alternate group may fail
Given D0 fails, if any of D3, D4, or D5 fails the system halts
(3/5)
Given D0 fails, if D3 fails the system is dead (1/5)



RAID 10

RAID 0

RAID 1

D0 D1

RAID 1

D2 D3

RAID 1

D4 D5

Of each mirror, at least one disk must remain healthy
Given D0 fails, if D1 fails the system is dead (1/5)
Given D0 fails, any other disk (except D1) may fail without
impact (1/5)



Summary

Overlap IO and computation as much as possible!
Use interrupts
Use DMA

Driver classes provide common interface
Storage: read/write/seek of blocks
Minimize random IO (i.e., quick sort is really bad on HDDs)
Carefully schedule IO on slow devices
RAID virtualizes disks


