
Distributed Systems
CSC 343, Operating Systems



Topics covered in this lecture

Distributed Systems
Network File System
Andrew File System

This slide deck covers chapters 48 - 50 in OSTEP.



File System Case Studies

Local
FFS: Fast File System
LFS: Log-Structured File System

Network
NFS: Network File System
AFS: Andrew File System



Atomicity

Atomicity means we do not get interrupted when partially done
(or at least that we can make it appear that way to the user.)

Concurrency: we are worried about other threads

Persistence: we are worried about crashes



Atomic Update

Suppose we want to update a file foo.txt; if we crash we
want one of the following:

all old data
all new data

Strategy: write new data to foo.tmp and only after that is
complete replace foo.txt by switching names



Protocols

Bad protocol
copy foo.txt to foo.tmp (with changes)
rename foo.tmp to foo.txt (new data is in RAM and not on
disk)

Good protocol
copy foo.txt to foo.tmp (with changes)
fsync foo.tmp
rename foo.tmp to foo.txt



Local FS Comparison

FFS + Journal:
must write data twice (writes expensive)
can put data exactly where we like (reads cheaper)

LFS:
all writes sequential (writes cheaper)
reads may be random (reads expensive)



Distributed Systems

Basic definition: more than one machine

Examples:
client/server: web server and we client
cluster: page rank computation

Why go distributed?
more compute power
more storage capacity
fault tolerance
data sharing



New Challenges

System failure: need to worry about partial failure

Communication failure: links unreliable



Communication

All communication is inherently unreliable

Need to worry about
bit errors
packet loss
node/link failure



Raw Messages: UDP

API:
reads and writes over socket file descriptors
messages sent from/to ports to target a process on machine

Provide minimal reliability features
messages may be lost
messages may be reordered
messages may be duplicated
only protection: checksums



Raw Messages: UDP

Advantages
lightweight
some applications make better reliablity decisions themselves
(for example, video conferencing programs)

Disadvantages
more difficult to write the application correctly



Reliable Messages

Strategy: using software, build reliable, logical connections over
unreliable connections



Acknowledgment (ACK)

Sender knows message was received



Timeout

Sender misses ACK; resend after timeout



Timeout

How long to wait?
too long: system feels unresponsive
too short: messages needlessly resent

Messages may have dropped due to overloaded server;
aggressive clients make the situation worse

One strategy: be adaptive:
adjust time based on how long acks usually take
for each missing ack, wait longer between retries



Timeout

What does a lost ack really mean?

ACK: message received exactly once

No ACK: message received at most once



Receiver Remembers Messages



Receiver Remembers Messages

Solution 1: remember every message ever sent

Solution 2: sequence numbers
give each message a sequence number, N
receiver knows all messages before N have been seen
receiver remembers message sent after N



TCP

Most popular protocol based on sequence numbers

Buffers messages so they arrive in order

Timeouts are adaptive



Virtual Memory

Inspiration: threads share memory

Idea: processes on different machines share memory

Strategy:
similar to swapping
instead of swap to disk, swap to another machine
sometimes multiple copies may be in memory on different
machines



Virtual Memory Problems

What if a machine crashes?
mapping disappears in other machines
how do we handle this?

Performance
when to prefetch?
loads/stores expected to fast

Distributed shared memory (DSM) not used today



Global File System

Advantages
file access is already expected to be slow
use common API
no need to modify applications (for the most part, file locks
over NFS do not work)

Disadvantages
does not always make sense



Remote Procedure Call (RPC)

Strategy: create wrappers so calling a function on another
machine feels like calling a local function

This abstraction is common



RPC Tools

RPC packages help with two components

Stub generation
create wrappers automatically

Runtime library
thread pool
socket listeners call functions on the server



Network File System (NFS) Architecture



Main Design Decisions

What functions to expose via RPC?

Think of NFS as more a protocol than a particular file system



Strategy 1

Wrap regular UNIX system calls using RPC
open() on client calls open() on server
open() on server returns file descriptor to client
read() on client calls read() on server
read() on server returns data back to client



Strategy 1 Problems

Imagine the server crashes and reboots during reads

int fd = open("foo", O_RDONLY);
read(fd, buf, MAX);
read(fd, buf, MAX);
...
read(fd, buf, MAX);



Subgoals

Fast and simple crash recovery
both clients and file server may crash

Transparent access
cannot tell that it is over the network
normal UNIX semantics

Reasonable performance



Potential Solutions

Run some crash recovery protocol upon reboot
complex

Persist file descriptors on server disk
slow
what if client crashes instead?



Strategy 2

Put all the information in the requests; use a “stateless”
protocol

server maintains no state about clients
server keeps other state, of course

Need API change, for example specify path and offset each
time:

pread(char *path, buf, size, offset)
pwrite(char *path, buf, size, offset)

Problem: too many path lookups



Strategy 3

Request inode
inode = open(char* path)
pread(inode, buf, size, offset)
pwrite(inode, buf, size, offset)

Problem: what if file is deleted and inode reused?



Strategy 4

File handles
fh = open(char* path)
pread(fh, buf, size, offset)
pwrite(fh, buf, size, offset)

File handle information
volume ID
inode number
generation number



Aside: append

Would an append() be a good idea?

Problem: if our RPC library retries if no ACK return what
happens when append() is retried?

Replica suppression is stateful; TCP is stateful – if the server
crashes, it forgets what RPCs have been executed

Solution: design the API so that there is no harm in executing
a call more than once, that is, ensure idempotence



Strategy 5; Client Logic

Build normal UNIX API on client side on top of the
idempotent, RPC-based API we have described

Client open() creates a local file descriptor containing the file
handle and offset



Cache

We can cache data in three places:
server memory
client disk
client memory

How do we keep all versions in sync?



Cache Problems

Problem: update visibility
a client may buffer a write
how can the server and other clients see it?
NFS solution: flush on closing a file descriptor

Problem: stale cache
a client may have a cached copy that is obsolete
how can we get the latest?
if we were not trying to be stateless, the server could push out
an update
NFS solution: clients recheck if cache is current before using it



Andrew File System (AFS)

Primary goal: scalability (many clients per server)

More reasonable semantics for concurrent file access

Not good about handling some failure scenarios



AFS Design

NFS: export local FS

AFS: present big file tree, store across many machines
break tree into “volumes” (partial subtrees)



Volumes

Volumes should be coalesced into a seamless file tree

Volume leaves may point to other volumes

A volume database (mapping volume names to physical
locations) is replicated on each server

clients can ask any server in the system



Volume Movement

What if we want to migrate a volume to another machine?

Steps:
copy over data (without halting I/O)
update volume database (without it becoming stale)



Cache Update Visibility

Client updates not seen on servers yet

NFS solution: flush blocks
on close()
when low on memory

Problems:
flushes not atomic (one block at a time)
two clients flush at once: mixed data



Cache Update Visibility

AFS solution:
flush on close()
buffer whole files on local disk

Concurrent writes?
last writer wins

Never get mixed data



Stale Cache

Clients have old version

NFS rechecks cache entries before using them, assuming a
check has not been done “recently”

“recent” is too long: you read old data
“recent” is too short: server overloaded with stat() calls



Stale Cache

AFS solution: tell clients when data is overwritten

When clients cache data, ask for “callback” from server

No longer stateless



Callbacks

What if client crashes?
On client reboot either: evict everything from cache or recheck
before using

What if server runs out of memory?
tell clients you are dropping their callback
clients mark entry for recheck

What if server crashes?
Either: tell all clients to recheck everything before next read or
persist callbacks



Prefetching

AFS paper notes that most files are read in their entirety

What are the implications for prefetching?
Aggressively prefetch whole files



Whole-File Caching

Upon open, AFS fetches whole file (even if it is huge) and
stores it in local memory or disk

Upon close, whole file is flushed (if it was written)

Convenient:
AFS needs to do work for open/close
reads/writes are local



Name Resolution

What if the same inodes and directory entries are repeatedly
read?

cache prevents too much disk I/O
too much CPU though

Solution: server returns directory entries to the client and the
client caches entries and inodes

pro: partial traversal is the common case
con: first lookup requires many round trips



Process Structure

For each client, a different process ran on the server
context switching costs were high

Solution: use threads
shared address space results in more useful TLB entries



File Locks

AFS has a dedicated lock server

A client can lock a file preventing another client from accessing
it while the lock is held

NFS does not have this capability


