
Data Integrity and Protection
CSC 343, Operating Systems



Topics covered in this lecture

Data Integrity and Protection

This slide deck covers chapters 45 in OSTEP.



Disk Failure Modes

Common and worthy failures are frequency of latent-sector
errors (LSEs) and block corruption.

Latent-sector errors arise when a disk sector has been damaged
in some way
Block corruption is where data becomes corrupt in a way
undetectable by the disk itself.

Type Cheap Costly

LSEs 9.40% 1.40%
Corruption 0.50% 0.05%



Disk Failure Modes

Frequency of latent-sector errors (LSEs)
Costly drives with more than one LSE are as likely to develop
additional LSEs
For most drives, annual error rate increases in year two
LSEs increase with disk size
Most disks with LSEs have less than 50
Disks with LSEs are more likely to develop additional LSEs
There exists a significant amount of spatial and temporal
locality
Disk scrubbing is useful (most LSEs were found this way)



Disk Failure Modes

Block corruption:
Chance of corruption varies greatly across different drive models
Effects of age are different across models
Workload and disk size have little impact on corruption
Most disks with corruption typically have very few corruptions
Corruption is not independent with a disk or across disks in a
RAID
There exists spatial locality, and some temporal locality
There is a weak correlation with LSEs



Handling Latent Sector Errors

Latent sector errors are easily detected and handled

Using redundancy mechanisms:
In a mirrored RAID or RAID-4/RAID-5 system based on parity,
the system should reconstruct the block from the other blocks
in the parity group.



Detecting Corruption: The Checksum

How can a client tell that a block has gone bad?

Using checksum mechanisms:
This is a function that takes a chunk of data as input and
computes a small summary of the content of the data



Common Checksum Functions

Different functions are used to compute checksums
A simple checksum function is based on exclusive or (XOR):
divide the data into equal-sized bitstring (with padding if
necessary) and keep a running bitwise XOR.

XOR is a reasonable checksum but has limitations; when two
bits in the same position within checksumed unit change, the
checksum will not detect the corruption.



Common Checksum Functions

Addition Checksum
Compute the 2’s complement addition over each chunk of the
data
This approach has the advantage of being fast.

Fletcher Checksum
Compute two check bytes, s1 and s2
Assuming a block D consists of bytes d1, . . . , dn

s1 = s1 + di mod255 (compute over all di )
s2 = s2 + s1mod255 (again, compute over all di )

Cyclical redundancy check (CRC)
Treat D as if it is a large binary number and divide it by an
agreed upon value; the remainder of this division is the value of
the CRC



Checksum Layout
The disk layout without checksum

The disk layout with checksum

Store the checksums packed into 512-byte blocks



Using Checksums

When reading a block D, the client reads its checksum from
disk Cs(D), stored checksum

Compute the checksum over the retrieved block D, computed
checksum Cc(D)

Compare the stored and computed checksums
If they are equal the data is safe
If are not equal, the data has changed since the time it was
stored.



Other Problems
Modern disks have a couple of unusual failure modes that
require different solutions

Misdirected writes arise in disk and RAID controllers when the
data is written correctly, but to the incorrect location

Lost writes occur when the device informs the upper layer that
a write has completed, but in fact is never written.



Scrubbing

When do these checksums actually get checked?
Most data is rarely accessed, and thus remains unchecked

To remedy this problem, many systems utilize disk scrubbing
Periodically read through every block of the system
Check whether checksums are still valid
Reduce the chance that all copies of certain data become
corrupted



Overhead of Checksumming

Two distinct kinds of overhead: space and time

Space overhead
Disk: a typical ratio might be an 8 byte checksum per 4 KB
data block; a 0.19% on-disk space overhead
Memory: this overhead is short-lived and not much of an issue

Time overhead
The CPU must compute the checksum of each block; to reduce
CPU overhead combine data copying and checksumming into
one activity


