
Cache Memories (Aside)
CSC 343, Operating Systems



Memory Hierarchies

Some fundamental and enduring properties of hardware and
software:

Fast storage technologies cost more per byte, have less capacity,
and require more power (heat!).
The gap between CPU and main memory speed is widening
Well-written programs tend to exhibit good locality

These fundamental properties complement each other
beautifully

The suggest an approach for organizing memory and storage
systems known as a memory hierarchy



Locality

Principle of Locality: Programs tend to use data and
instructions with addresses near or equal to those they have
used recently

Temporal locality:
Recently referenced items are likely to be referenced again in
the near future

Spatial locality:
Items with nearby addresses tend to be referenced close
together in time



Example Memory Hierarchy



Caches
Cache: A smaller, faster storage device that acts as a staging
area for a subset of the data in a larger, slower device

Fundamental idea of a memory hierarchy:
For each k, the faster, smaller device at level k serves as a
cache for the larger, slower device at level k + 1

Why do memory hierarchies work?
Because of locality, programs tend to access data at level k
more often than they access the data at level k + 1
Thus, the storage at level k + 1 can be slower, larger, and
cheaper per bit

Big Idea (Ideal): The memory hierarchy creates a large pool of
storage that costs as much as the cheap storage near the
bottom, but serves data to programs at the rate of the fast
storage near the top



General Cache Concepts



General Cache Concepts

A cache hit is when the data in block b is needed and is in the
cache

A cache miss is when the data in block b is needed and is in
not the cache

Types of cache misses:
Cold (compulsory) miss: occur because the cache starts empty
and this is the first reference to the block
Capacity miss: occur when the set of active cache blocks
(working set) is larger than the cache
Conflict miss: occur when the level k cache is large enough, but
multiple data objects all map to the same level k block where a
block is a small subset of the block positions at level k − 1



General Cache Organization (S, E, B)



Cache Read

Locate set

Check if any line in set has matching tag

Yes and the line is valid: hit

Locate data starting at offset



Example: Direct-Mapped Cache

Direct mapped: one line per set (E = 1)



Example: Direct-Mapped Cache

Note: the middle bits are used for indexing due to better
locality



Example: Direct-Mapped Cache

Note: if tag does not match, then old line is evicted and
replaced



Direct-Mapped Cache Simulation

Parameters: 4-bit addresses (address space size M = 16 bytes),
S = 4 sets, E = 1 Block per set, B = 2 bytes per block

Address trace (reads, one byte per read)

Address t s b Type

0 0 00 0 miss (cold)
1 0 00 1 hit
7 0 11 1 miss (cold)
8 1 00 0 miss (cold)
0 0 00 0 miss (conflict)



Direct-Mapped Cache Simulation

Cache after trace

Set Valid Tag Block

0 1 0 M[0-1]
1 0
2 0
3 1 0 M[6-7]



Example: E-way Set Associative Cache

There are E lines per set

Procedure
Find the set with the s-bits
Compare the tag for all E lines to the t-bits
If any of the tags match, then there is a hit
Otherwise, select a line for eviction and replacement from
within the set

There are many ways to select a replacement: random, least
recently used (LRU), etc.



2-way Set Associative Cache Simulation

Parameters: 4-bit addresses (address space size M = 16 bytes),
S = 2 sets, E = 2 blocks per set, B = 2 bytes per block

Address trace (reads, one byte per read)

Address t s b Type

0 00 0 0 miss
1 00 0 1 hit
7 01 1 1 miss
8 10 0 0 miss
0 00 0 0 hit



2-way Set Associative Cache Simulation

Cache after trace

Set Line Valid Tag Block

0 1 1 00 M[0-1]
0 2 1 10 M[8-9]
1 1 1 01 M[6-7]
1 2 0



Cache Writes

Multiple copies of data exist:
L1, L2, L3, Main Memory, Disk

What to do on a write-hit?
Write-through (write immediately to memory)
Write-back (defer write to memory until replacement of line)

Each cache line needs a dirty bit (set if data differs from
memory)

What to do on a write-miss?
Write-allocate (load into cache, update line in cache)

Good if more writes to the location will follow
No-write-allocate (writes straight to memory, does not load into
cache)

Typical combinations
Write-through and No-write allocate
Write-back and Write-allocate



Cache Performance Metrics

Miss Rate
Fraction of memory accesses not found in cache (misses /
access)
Typical numbers:

3-10% for L1
can be quite small for L2, depending on size, etc.

Hit Time
Time to deliver a cached block to the processor

includes time to determine whether line is in cache
Typical numbers:

4 clock cycles for L1
10 clock cycles for L2

Miss Penalty
Additional time required because of a miss

typically 50-200 cycles for main memory (trend: increasing)



How Bad Can a Few Cache Misses Be?

Huge difference between a hit and a miss
Could be 100x if just L1 and main memory

Would you believe 99% hits is twice as good as 97%?
Consider this simplified example:

cache hit time of 1 cycle
cache miss penalty of 100 cycles

Average access time:
97% hits: 1 cycle + 0.03 × 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 × 100 cycles = 2 cycles

This is why “miss rate” is used instead of “hit rate”


