
C Programming (Aside)
CSC 343, Operating Systems

C Basics

Summary:
pointers / arrays / structs / casting

Memory management

Function pointers / generic types

Strings

Miscellaneous

Pointers

A pointer stores the address of a value in memory
For example, int*, char*, int**, etc.
Access the value by dereferencing (*a); can be used to read
value or write value to given address
Dereferencing NULL causes a runtime error

A pointer to type a references a block of sizeof(a) bytes

Get the address of a value in memory with the & operator.

Can alias pointers to the same address.

Call-by-Value versus Call-by-Reference

Call-by-value: changes made to arguments passed to a function
are not reflected in the calling function.

Call-by-reference: changes made to arguments passed to a
function are reflected in the calling function

C is a call-by-value language

To cause changes to values outside the function, use pointers.

Example

void swap(int* a, int* b) {
int temp = *a;
*a = *b;
*b = temp;

}

int main() {
int x = 42;
int y = 54;
swap(&x, &y);
printf("%d\n", x);
printf("%d\n", y);

}

Pointer Arithmetic

Can add/subtract from an address to get a new address
Only perform when absolutely necessary (that is, malloc)
Results depends on the pointer type

Examples:
int* a; a+i → a = &a + sizeof(int) * i
char* a; a+i → a = &a + sizeof(char) * i
int** a; a+i → a = &a + sizeof(int*) * i

Rule of thumb: cast pointer explicitly to avoid confustion
prefer (char*)(a) + i versus a + i
absolutely do this in macros

Structs

Collection of values placed under one name in a single block of
memory

Given a struct instance, access the fields using the . (dot)
operator

Given a stuct pointer, access the fields using the -> operator

Struct Example
struct foo_s {

int a;
char b;

}

struct bar_s }
char arr[10];
foo_s baz;

}

bar_s biz;
biz.arr[0] = 'a';
biz.baz.a = 42;
bar_s* boz = &biz;
boz->baz.b = 'b';

Arrays/Strings

Arrays: fixed-size collection of elements of the same type
Can allocate on the stack or on the heap
int a[10]; // array of 10 ints on the stack
int* a = calloc(10, sizeof(int)); // array of 10
ints on the heap

Strings: null-terminated character arrays
null-character (\0) tells us where the string ends
all standard C library functions on strings assume
null-termination

Casting

Can cast a variable to a different type

Integer type casting:
signed leftrightarrow unsigned: change interpretation of the
most significant bit
smaller signed → larger signed: sign-extend (duplicate the sign
bit)
smaller unsigned → larger unsigned: zero-extend (duplicate 0)

Cautions:
cast explicitly; C will cast operations involving different types
implicitly, often leading to errors
never cast to a smaller type; will truncate (lose) data
never cast a pointer to a larger type and dereference it; this
accesses memory with undefined contents

malloc, free, calloc
Handle dynamic (heap) memory

void* malloc (size_t size)

allocate block of memory of size bytes
does not initialize memory

void* calloc (size_t num, size_t size)

allocate block of memory for array of num elements, each size
bytes long
initializes memory to zero values

void free(void* ptr)

frees a previously allocated block pointed to by ptr
use exactly once for each pointer you allocate

Note: the size argument should be computed with the
sizeof operator

Memory Management Rules

malloc what you free, free what you malloc
client should free memory allocated by client code
library should free memory allocated by library code

number of mallocs = number of frees
number of mallocs > number of frees: definitely a memory
leak
number of mallocs < number of frees: definitely a double
free

Free a malloced block exactly once
should not dereference a freed memory block

Stack versus Heap Allocation

Local variables and function arguments are placed on the stack
deallocated after the variable leaves scope
do not return a pointer to a stack-allocated variable
do not reference the address of a variable outside its scope

Memory blocks allocated by calls to malloc/calloc are
placed on the heap

Globals, constants are placed elsewhere

Example:
int* a = malloc(sizeof(int))
// a is a pointer on the stack to a memory block
on the heap

typedef

Creates an alias type name for a different type

Useful to simply the names of complex data types

struct list_node {
int x;

}

typedef int pixel;
typedef struct list_node* node;
typedef int (*cmp)(int e1, int e2);

pixel x; // int type
node foo; // struct list_nod type
cmp int_cmp; // int (*cmp)(int e1, int e2);

Macros

Fragment of code given a name; replace occurrence of name
with contents of macro

Uses:
defining constants
defining simple operations

Warnings:
use parentheses around arguments/expressions to avoid
problems after substitution
do not pass expressions with side effects as arguments to macros

#define INT_MAX 0x7FFFFFFF
#define MAX(A, B) ((A) > (B) ? (A) : (B))

Generic Types

void* type is C’s provision for generic types
raw pointer to some memory location (unknown type)
cannot dereference a void*
must cast void* to another type in order to dereference it

Can cast back and forth between void* and other pointer
types

Generic Types Example

// stack implementation
typedef void* elem;

stack stack_new();
void push(stack S, elem e);
elem pop(stack S);

// stack usage
int x = 42; int y = 54;
stack S = stack_new();
push(S, &x);
push(S, &y);
int a = *(int*)pop(S);
int b = *(int*)pop(S);

Header Files

Includes C declarations and macro definitions to be shared
across multiple files

only include function prototypes/macros; no implementation
code

Usage: #include <header.h>
#include <lib> for standard libraries (for example, #include
<string.h>
#include "file" for your source files (for example, #include
"header.h"
never include .c files (bad practice)

Header Guards

Double-inclusion problem: include the same header file twice

Solution: header guard ensures single inclusion

Syntax Example:

#ifndef FILENAME_H
#define FILENAME_H

#endif

Odds and Ends

Prefix versus postfix increment/decrement
a++: use a in the expression, then increment a
++a: increment a, then use a in the expression

Switch Statements:
remember break statements after every case, unless you want
fall through
should probably use a default case

Variable/function modifiers
global variables: defined outside functions, seen by all files
static variables/functions: seen only in the file it is declared in

string.h

One of the most useful libraries

Important usage details regarding arguments:
prefixes: str → strings, mem → arbitrary
ensure that all strings are null-terminated
ensure that dest is large enough to store src
ensure that src actually contains n bytes
ensure that src/dest do not overlap

string.h Common String/Array
Functions

Copy
void* memcopy (void* dest, void* src, size_t n):
copy n bytes of src into dest
char* strcopy (char* dest, char* src): copy src
string into dest, return dest

Concatenation
char* strcat (char* dest, char* src): append copy of
src to end of dest, return dest

Comparison
int strcmp (char* str1, char* str2): compare str1 to
str by character (based on ASCII value), return comparison
result

string.h Common String/Array
Functions

Searching
char* strstr (char* str1, char* str2): return pointer
to first occurrence of str2 in str1, else NULL
char* strtok (char* str, char* delimiters); tokenize
str according to delimiter characters provided in delimiters,
return next token per successive strtok call, using str =
NULL

Other
size_t strlen (const char* str): returns length of the
string
void* memset (voide* ptr, int val, size_t n): set
first n bytes of memory block addressed by ptr to val

stdlib.h: General Purpose Functions
Dynamic memory allocation:

malloc, free, calloc
String conversion:

int atoi (char* str): parse string into integral value
(return 0 if not parsed)

System calls:
void exit (int status): terminate calling process, return
status to parent process
void abort(): aborts process abnormally

Searching/Sorting:
provide array, array size, element size, comparator (function
pointer)
bsearch: returns pointer to matching element in the array
qsort: sorts the array destructively

Integer arithmetic:
int abs (int n): returns absolute value of n

Types:
size_t: unsigned integral type

stdio.h

Used for:
argument parsing
file handling
input/output

Note about Library Functions

These functions can return error codes
malloc could fail
a file could not be opened
a string may be incorrectly parsed

Remember to check for the error cases and handle the errors
accordingly

may have to terminate the program
may be able to recover

Tools

GCC: compiler

GDB: stepping debugger

Valgrind: find memory errors, detect memory leaks
Common errors:

illegal read/write
use of uninitialized values
illegal frees
overlapping source/destination addresses

--leak-check=full details each definitely/possibly lost
memory block

GCC

Used to compile C projects
list the files that will be compiled to form an executable
specify options via flags

Important flags:
-g: produce debug information
-Werror: treat all warnings as errors
-Wall/-Wextra: enable all construction warnings
-pedantic: indicate all mandatory diagnostics listed in C
standard
-O0/-O1/-O2: optimization levels
-o <filename>: name of output binary filename

