
REST
CSC 342 - Web Technologies



Representational State Transfer

Representational state transfer (REST) or RESTful Web
services are a way providing interoperability between computer
systems on the Web

REST-compliant web services allow requesting systems to
access and manipulate textual representations of web resources

Requests are made to a resource’s URI with the predefined
HTTP verbs

A response may provide hyperlinks to other related resources



REST Architectural Constraints

Client-server

Stateless

Cacheble

Layered System

Uniform Interface

Code on demand (optional)



Client-server

The client-server model separates concerns.

By separating user interface concerns from data storage
concerns, portability of user interfaces is improved and
scalability of server components is improved.

Separation also allows the components to evolve independently.



Stateless

The stateless constraint means that each request from the
client contains all of the necessary information to service the
request.

Statelessness enables greater scalability since the server does
not need to maintain any session state.

Note that there is a difference between application state and
resource state; the application state is data that can vary by
client, but the resource state is constant across every client
that requests the resource. The statelessness constraint refers
to the application state.



Cacheable

Clients and intermediaries can cache responses; this constraint
requires responses to be defined as cacheable or not so that
clients do not reuse stale or inappropriate data in future
requests.

Cacheable resources can reduce the number of client-server
interactions improving scalability and performance.



Layered System

In a layered system, the client cannot ordinarily determine
whether it is connected directly to the end server or some
intermediary server.

Intermediary servers can improve system scalability by enabling
load-balancing and by providing shared caches.



Uniform Interface

The uniform interface constraint simplifies and decouples the
architecture. There are four constraints for a uniform interface:

Identification of resources: individual resources are identified
by requests. The resources are conceptually separate from the
representations that are returned to the client.

Manipulation of resources through representations: When
a client holds a representation of a resource, it has enough
information to modify or delete the resource.

Self-descriptive messages: Each message includes enough
information to describe how to process the message.

Hypermedia as the engine of application state
(HATEOS): The client interacts with application through a
fixed URL and all future actions a client may take are discovered
within resource representations returned from the server.



Code on Demand

Servers are able to temporarily extend or customize the
functionality of the client by transferring logic to it that it can
execute.

Code on demand is the only optional constraint. If an
application does not conform to the other five constraints, it is
not strictly a REST application.



RESTful APIs
Web services that adhere to the REST architectural constraints
are called RESTful APIs.

HTTP-based RESTful APIs are defined with the following
aspects:

A base URL, such as http://api.example.com/resources/

An internet media type that defines state transition data
elements – the current representation tells the client how to
compose requests for transitions to the next available
application states

Standard HTTP methods

Unlike SOAP-based web services there is no standard for
RESTful APIs. This is because REST is an architectural style,
while SOAP is a protocol.



REST Conventions for CRUD

URLs are resources and CRUD maps to HTTP verbs

Action HTTP Verb Example URL

Create POST /customers
Replace PUT /customers/:id
Update PATCH /customers/:id
Delete DELETE /customers/:id


