
Signals



Signals

A signal is a software notification to a process of an event.

A signal is generated when the event that causes the signal
occurs.

A signal is delivered when the process takes action based on
that signal.

The lifetime of a signal is the interval between its generation
and its delivery.

A signal that has been generated but not yet delivered is said
to be pending.



Generating Signals

Signals can be generated from the command line with the
kill command.

kill -s signal_name pid...
kill -l [exit_status]
kill [-signal_name] pid...
kill [-signal_number] pid...



Generating Signals

Signals can be generated in a process with the kill function
to send a signal to another process:

#include<signal.h>
int kill(pid_t, int sig);

Signals can be generated in a process with the raise function
to send a signal to itself:

#include<signal.h>
int raise(int sig);



Signal Masks

A process can temporarily prevent a signal from being delivered
by blocking it.

The signal mask gives the set of signals that are currently
blocked.

Note that blocking a signal is different than ignoring a signal; a
pending blocked signal will be delivered once the process
unblocks the signal.



Signal Sets

Signal sets are groups of signals that can be operated on and
have type sigset_t

The following functions are used for manipulating signal sets

#include<signal.h>

int sigaddset(sigset_t *set, int signo);
int sigdelset(sigset_t *set, int signo);
int sigemptyset(sigset_t *set);
int sigfillset(sigset_t *set);
int sigismember(const sigset_t *set, int signo);



Catching Signals
A process catches a signal if it executes a signal handler when
the signal is delivered.

A program installs a signal handler by calling by calling
sigaction with the name of a user-written function.

#include<signal.h>
int sigaction(int sig,

const stuct sigaction *restrict act,
strcut sigaction *restrict oact);

struct sigaction {
void (*sa_handler) (int);
sigset_t sa_mask;
int sa_flags;
void(*sa_sigaction) (int, siginfo *, void *);

}



Waiting for Signals

The pause function suspends the calling thread until the
delivery of a signal.

int pause(void);

The sigsuspend function sets a signal mask and suspends the
process until a signal is caught by the process.

int sigsuspend(const sigset_t *sigmask);

The sigwait function blocks until any of the specified signals
is pending then removes that signal from the set of pending
signals and unblocks.

int sigwait(const sigset_t *restrict sigmask,
int *restrict signo);



Errors and Async-signal Safety

Difficulties when signals interact with function calls
Restarting a function that is interrupted by a signal

Signal handlers calling non-reentrant functions

Handling errors that use errno


