n, Johan Bos & Kristina Striegnitz

© Patrick Blackbur

Lecture 9: A closer look at terms

* Theory
— Introduce the == predicate
— Take a closer look at term structure
— Introduce strings in Prolog
— Introduce operators

 Exercises
— Exercises of LPN: 9.1, 9.2, 9.3, 94, 9.5

— Practical session

n, Johan Bos & Kristina Striegnitz

© Patrick Blackbur

Comparing terms: ==/2

* Prolog contains an important
predicate for comparing terms

* This is the identity predicate
::/2

* The identity predicate ==/2
does not instantiate variables,

that is, it behaves differently
from =/2

n, Johan Bos & Kristina Striegnitz

© Patrick Blackbur

Comparing terms: ==/2

* Prolog contains an important
predicate for comparing terms

* This is the identity predicate
::/2

* The identity predicate ==/2
does not instantiate variables,

that is, it behaves differently
from =/2

?- a==a.
yes

?- a==b.
no

?2-a=='a'.
yes

?- a==X.
X = _443
no

n, Johan Bos & Kristina Striegnitz

© Patrick Blackbur

Comparing variables

 Two different uninstantiated
variables are not identical
terms

e Variables instantiated with a
term T are identicalto T

n, Johan Bos & Kristina Striegnitz

© Patrick Blackbur

Comparing variables

 Two different uninstantiated
variables are not identical
terms

e Variables instantiated with a
term T are identicalto T

?- X==X.

X = 443

yes

?-Y==X.

Y = 442

X = 443

no

?- a=U, a==U.
U= 443

yes

n, Johan Bos & Kristina Striegnitz

© Patrick Blackbur

Comparing terms: \==/2

* The predicate \==/2 is defined
so that it succeeds in
precisely those cases where
==/2 fails

* In other words, it succeeds
whenever two terms are not
identical, and fails otherwise

n, Johan Bos & Kristina Striegnitz

© Patrick Blackbur

Comparing terms: \==/2

* The predicate \==/2 is defined
so that it succeeds in
precisely those cases where
==/2 fails

* In other words, it succeeds
whenever two terms are not
identical, and fails otherwise

?-a\==a.
no

?-a\==Db.
yes

?-a\=="a".
no

?-a\==X.
X = 443
yes

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Terms with a special notation

« Sometimes terms look different, but
Prolog regards them as identical

* For example: a and 'a’, but there are
many other cases

* Why does Prolog do this?

— Because it makes programming more
pleasant

— More natural way of coding Prolog
programs

n, Johan Bos & Kristina Striegnitz

© Patrick Blackbur

Arithmetic terms

 Recall lecture 5 where we
Introduced arithmetic

¢« + - <, > etc are functors
and expressions such as 2+3
are actually ordinary complex
terms

e The term 2+3 is identical to
the term +(2,3)

n, Johan Bos & Kristina Striegnitz

© Patrick Blackbur

Arithmetic terms

 Recall lecture 5 where we
Introduced arithmetic

¢« + - <, > etc are functors
and expressions such as 2+3
are actually ordinary complex
terms

e The term 2+3 is identical to
the term +(2,3)

?2- 243 == +(2,3).
yes
?2- -(2,3) == 2-3.
yes

?7- (4<2) == <(4,2).
yes

n, Johan Bos & Kristina Striegnitz

© Patrick Blackbur

Summary of comparison predicates

Unification predicate

Negation of unification predicate

|dentity predicate

Negation of identity predicate

Arithmetic equality predicate

Negation of arithmetic equality predicate

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Lists as terms

* Another example of Prolog working with one
internal representation, while showing
another to the user

* Using the | constructor, [ab.c.d] == [alb.c.dll.
there are many ways yes

of writing the same list | ?-[a.b,c,d] == [a,b.c|[d]].
yes
?-[a,b,c,d] == [a,b,c,d|[]].
yes
?-[a,b,c,d] == [a,b][c,d]].
yes

n, Johan Bos & Kristina Striegnitz

© Patrick Blackbur

Prolog lists internally

* Internally, lists are built out of two
special terms:

—[] (which represents the empty list)

3)

—"." (a functor of arity 2 used to build
non-empty lists)

* These two terms are also called
list constructors

* A recursive definition shows how they
construct lists

n, Johan Bos & Kristina Striegnitz

© Patrick Blackbur

Definition of prolog list

 The empty list is the term []. It has length O.

* A non-empty list is any term of the form
.(term,list), where term is any Prolog term,
and list is any Prolog list. If /ist has length n,
then .(term,list) has length n+1.

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

A few examples...

?-.(a[]) == [al.

yes

?- .(f(d,e),[]) == [f(d,e)].
yes

?- .(a,.(b,[]])) == [a,b].
yes

?- (a,.(b,.(f(d,e),[]))) == [a,b,f(d,e)].
yes

n, Johan Bos & Kristina Striegnitz

© Patrick Blackbur

Internal list representation

* Works similar to the | notation:

* It represents a list in two parts

— Its first element, the head
— the rest of the list, the tail

 The trick is to read these terms as trees
— Internal nodes are labeled with .

— All nodes have two daughter nodes
« Subtree under left daughter is the head
« Subtree under right daughter is the talil

Example of a list as tree

 Example: [a,[b,c],d]

n, Johan Bos & Kristina Striegnitz

© Patrick Blackbur

Examining terms

* We will now look at built-in predicates
that let us examine Prolog terms more
closely

— Predicates that determine the type of
terms

— Predicates that tell us something about the
Internal structure of terms

Johan Bos & Kristina Striegnitz

© Patrick Blackburn,

Type of terms

Simple Te

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Checking the type of a term

atom/1 Is the argument an atom?
integer/1 ... an integer?

float/1 ... a floating point number?
number/1 ... an integer or float?
atomic/1 ... a constant?

var/1 ... an uninstantiated variable?
nonvar/1 ... an instantiated variable or

another term that is not an
uninstantiated variable

Type checking: atom/1

?- atom(a).
yes

?- atom(7).
no

?- atom(X).
no

Type checking: atom/1

?- X=a, atom(X).
X=a
yes

?- atom(X), X=a.
no

Type checking: atomic/1

?- atomic(mia).
yes

?- atomic(5).
yes

?- atomic(loves(vincent,mia)).
no

Type checking: var/1

?- var(mia).
no

?2- var(X).
yes

?- X=5, var(X).
no

Type checking: nonvar/1

?- nonvar(X).
no

?- nonvar(mia).
yes

?- nonvar(23).
yes

The structure of terms

* Given a complex term of unknown
structure, what kind of information
might we want to extract from it?

* Obviously:
— The functor

— The arity
— The argument

* Prolog provides built-in predicates to
produce this information

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

The functor/3 predicate

* The functor/3 predicate gives the
functor and arity of a complex predicate

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

The functor/3 predicate

* The functor/3 predicate gives the
functor and arity of a complex predicate
?- functor(friends(lou,andy),F,A).
F = friends
A=2
yes

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

The functor/3 predicate

* The functor/3 predicate gives the
functor and arity of a complex predicate
?- functor(friends(lou,andy),F,A).
F = friends
A=2
yes

?- functor([lou,andy,vicky],F,A).
F=.
A=2
yes

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

functor/3 and constants

* What happens when we use functor/3
with constants”

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

functor/3 and constants

* What happens when we use functor/3
with constants?
?- functor(mia,F,A).
F = mia
A=0
yes

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

functor/3 and constants

* What happens when we use functor/3
with constants”

?- functor(mia,F,A).
F = mia
A=0
yes

?- functor(14,F,A).
F=14
A=0
yes

n, Johan Bos & Kristina Striegnitz

© Patrick Blackbur

functor/3 for constructing terms

 You can also use functor/3 to construct
terms:
?- functor(Term,friends,2).

Term = friends(_,)
yes

Checking for complex terms

complexTerm(X):-
nonvar(X),
functor(X, ,A),
A> 0.

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Arguments: arg/3

* Prolog also provides us with the
predicate arg/3

* This predicate tells us about the
arguments of complex terms

* It takes three arguments:
— A number N
— A complex term T

— The Nth argument of T

n, Johan Bos & Kristina Striegnitz

© Patrick Blackbur

Arguments: arg/3

* Prolog also provides us with the

predicate arg/3

* This predicate tells us about the
arguments of complex terms

* It takes three arguments:

— A number N
— A complex term T

— The Nth argument of T

?- arg(2,likes(lou,andy),A).
A = andy
yes

n, Johan Bos & Kristina Striegnitz

© Patrick Blackbur

Strings

« Strings are represented in Prolog by a
list of character codes

* Prolog offers double quotes for an easy
notation for strings

?2- S = “Vicky".
S =[86,105,99,107,121]
yes

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Working with strings

* There are several standard predicates
for working with strings

A particular useful one is atom_codes/2

?- atom_codes(vicky,S).
S =[118,105,99,107,121]
yes

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Operators

* As we have seen, in certain cases,
Prolog allows us to use operator
notations that are more user friendly

» Recall, for instance, the arithmetic
expressions such as 2+2 which
internally means +(2,2)

* Prolog also has a mechanism to add
your own operators

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Properties of operators

* Infix operators
— Functors written between their arguments
— Examples: + - = == | ; [-->
* Prefix operators
— Functors written before their argument
— Example: - (to represent negative numbers)

» Postfix operators
— Functors written after their argument
— Example: ++ in the C programming language

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Precedence

* Every operator has a certain
precedence to work out ambiguous
expressions

* Forinstance, does 2+3*3 mean
2+(3*3), or (2+3)*37
» Because the precedence of + is greater

than that of *, Prolog chooses + to be
the main functor of 2+3*3

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Associativity

* Prolog uses associativity to disambiguate
operators with the same precedence value

 Example: 2+3+4
Does this mean (2+3)+4 or 2+(3+4)7
— Left associative
— Right associative

* Operators can also be defined as non-
associative, in which case you are forced to
use bracketing in ambiguous cases
— Examples in Prolog: - -->

n, Johan Bos & Kristina Striegnitz

© Patrick Blackbur

Defining operators

* Prolog lets you define your own
operators

» Operator definitions look like this:

.- op(Precedence, Type, Name).

— Precedence:
number between 0 and 1200

— Type: the type of operator

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Types of operators in Prolog

o yfXx
o Xfy
o XxfX
o fX

ofy
o Xxf

oyf

left-associative, infix
right-associative, infix
non-associative, infix
non-associative, prefix
right-associative, prefix
non-associative, postfix
left-associative, postfix

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Operators in SWI Prolog

1200
1200
1150

1100
1050
1000
054
900

700

xrfy
xfy
xfy
xfy

fy

xfy

xfy

xfr
fx
fr

fx
xfr

yfx

fr
yfr
xfr

dynamic,

module_transparent,

discontiguous,

volatile

2. |

->. Op, -

r
".'.-+-
— . . :IZﬂ: — L% - —1 :".'_:
- N\ /. xor
-_— \
NN N rdiv, <<, >>,mod, rem
o

multifile,

initialization,
thread_local,

