
©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Lecture 9: A closer look at terms

•  Theory
–  Introduce the == predicate
– Take a closer look at term structure
–  Introduce strings in Prolog
–  Introduce operators

•  Exercises
– Exercises of LPN: 9.1, 9.2, 9.3, 9.4, 9.5
– Practical session

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Comparing terms: ==/2

•  Prolog contains an important
predicate for comparing terms

•  This is the identity predicate
==/2

•  The identity predicate ==/2
does not instantiate variables,
that is, it behaves differently
from =/2

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Comparing terms: ==/2

•  Prolog contains an important
predicate for comparing terms

•  This is the identity predicate
==/2

•  The identity predicate ==/2
does not instantiate variables,
that is, it behaves differently
from =/2

?- a==a.
yes

?- a==b.
no

?- a=='a'.
yes

?- a==X.
X = _443
no

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Comparing variables

•  Two different uninstantiated
variables are not identical
terms

•  Variables instantiated with a
term T are identical to T

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Comparing variables

•  Two different uninstantiated
variables are not identical
terms

•  Variables instantiated with a
term T are identical to T

?- X==X.
X = _443
yes

?- Y==X.
Y = _442
X = _443
no

?- a=U, a==U.
U = _443
yes

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Comparing terms: \==/2

•  The predicate \==/2 is defined
so that it succeeds in
precisely those cases where
==/2 fails

•  In other words, it succeeds
whenever two terms are not
identical, and fails otherwise

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Comparing terms: \==/2

•  The predicate \==/2 is defined
so that it succeeds in
precisely those cases where
==/2 fails

•  In other words, it succeeds
whenever two terms are not
identical, and fails otherwise

?- a \== a.
no

?- a \== b.
yes

?- a \== 'a'.
no

?- a \== X.
X = _443
yes

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Terms with a special notation

•  Sometimes terms look different, but
Prolog regards them as identical

•  For example: a and 'a', but there are
many other cases

•  Why does Prolog do this?
– Because it makes programming more

pleasant
– More natural way of coding Prolog

programs

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Arithmetic terms

•  Recall lecture 5 where we
introduced arithmetic

•  +, -, <, >, etc are functors
and expressions such as 2+3
are actually ordinary complex
terms

•  The term 2+3 is identical to
the term +(2,3)

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Arithmetic terms

•  Recall lecture 5 where we
introduced arithmetic

•  +, -, <, >, etc are functors
and expressions such as 2+3
are actually ordinary complex
terms

•  The term 2+3 is identical to
the term +(2,3)

?- 2+3 == +(2,3).
yes

?- -(2,3) == 2-3.
yes

?- (4<2) == <(4,2).
yes

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Summary of comparison predicates

Negation of arithmetic equality predicate =\=

Arithmetic equality predicate =:=

Negation of identity predicate \==

Identity predicate ==

Negation of unification predicate \=

Unification predicate =

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Lists as terms

•  Another example of Prolog working with one
internal representation, while showing
another to the user

•  Using the | constructor,
 there are many ways
of writing the same list

?- [a,b,c,d] == [a|[b,c,d]].
yes
?- [a,b,c,d] == [a,b,c|[d]].
yes
?- [a,b,c,d] == [a,b,c,d|[]].
yes
?- [a,b,c,d] == [a,b|[c,d]].
yes

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Prolog lists internally

•  Internally, lists are built out of two
special terms:
–  [] (which represents the empty list)
–  ’.’ (a functor of arity 2 used to build

 non-empty lists)
•  These two terms are also called

list constructors
•  A recursive definition shows how they

construct lists

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Definition of prolog list

•  The empty list is the term []. It has length 0.
•  A non-empty list is any term of the form

.(term,list), where term is any Prolog term,
and list is any Prolog list. If list has length n,
then .(term,list) has length n+1.

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

A few examples…

?- .(a,[]) == [a].
yes

?- .(f(d,e),[]) == [f(d,e)].
yes

?- .(a,.(b,[])) == [a,b].
yes

?- .(a,.(b,.(f(d,e),[]))) == [a,b,f(d,e)].
yes

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Internal list representation

•  Works similar to the | notation:
•  It represents a list in two parts

–  Its first element, the head
–  the rest of the list, the tail

•  The trick is to read these terms as trees
–  Internal nodes are labeled with .
– All nodes have two daughter nodes

•  Subtree under left daughter is the head
•  Subtree under right daughter is the tail

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Example of a list as tree

•  Example: [a,[b,c],d]

a

.

.

b

. .

.

c []

d []

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Examining terms

•  We will now look at built-in predicates
that let us examine Prolog terms more
closely
– Predicates that determine the type of

terms
– Predicates that tell us something about the

internal structure of terms

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Type of terms

Terms

Simple Terms Complex Terms

Constants Variables

Atoms Numbers

Terms

Simple Terms Complex Terms

Constants Variables

Atoms Numbers

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Checking the type of a term

atom/1
integer/1
float/1
number/1
atomic/1
var/1
nonvar/1

Is the argument an atom?
… an integer?
… a floating point number?
… an integer or float?
… a constant?
… an uninstantiated variable?
… an instantiated variable or

 another term that is not an
 uninstantiated variable

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Type checking: atom/1

?- atom(a).
yes

?- atom(7).
no

?- atom(X).
no

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Type checking: atom/1

?- X=a, atom(X).
X = a
yes

?- atom(X), X=a.
no

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Type checking: atomic/1

?- atomic(mia).
yes

?- atomic(5).
yes

?- atomic(loves(vincent,mia)).
no

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Type checking: var/1

?- var(mia).
no

?- var(X).
yes

?- X=5, var(X).
no

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Type checking: nonvar/1

?- nonvar(X).
no

?- nonvar(mia).
yes

?- nonvar(23).
yes

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

The structure of terms

•  Given a complex term of unknown
structure, what kind of information
might we want to extract from it?

•  Obviously:
– The functor
– The arity
– The argument

•  Prolog provides built-in predicates to
produce this information

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

The functor/3 predicate

•  The functor/3 predicate gives the
functor and arity of a complex predicate

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

The functor/3 predicate

•  The functor/3 predicate gives the
functor and arity of a complex predicate
?- functor(friends(lou,andy),F,A).

F = friends
A = 2
yes

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

The functor/3 predicate

•  The functor/3 predicate gives the
functor and arity of a complex predicate
?- functor(friends(lou,andy),F,A).

F = friends
A = 2
yes

?- functor([lou,andy,vicky],F,A).

F = .
A = 2
yes

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

functor/3 and constants

•  What happens when we use functor/3
with constants?

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

functor/3 and constants

•  What happens when we use functor/3
with constants?
?- functor(mia,F,A).

F = mia
A = 0
yes

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

functor/3 and constants

•  What happens when we use functor/3
with constants?
?- functor(mia,F,A).

F = mia
A = 0
yes

?- functor(14,F,A).
F = 14
A = 0
yes

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

functor/3 for constructing terms

•  You can also use functor/3 to construct
terms:
?- functor(Term,friends,2).

Term = friends(_,_)
yes

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Checking for complex terms

complexTerm(X):-
 nonvar(X),
 functor(X,_,A),
 A > 0.

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Arguments: arg/3

•  Prolog also provides us with the
predicate arg/3

•  This predicate tells us about the
arguments of complex terms

•  It takes three arguments:
– A number N
– A complex term T
– The Nth argument of T

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Arguments: arg/3

•  Prolog also provides us with the
predicate arg/3

•  This predicate tells us about the
arguments of complex terms

•  It takes three arguments:
– A number N
– A complex term T
– The Nth argument of T

?- arg(2,likes(lou,andy),A).
A = andy
yes

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Strings

•  Strings are represented in Prolog by a
list of character codes

•  Prolog offers double quotes for an easy
notation for strings

?- S = “Vicky“.
S = [86,105,99,107,121]
yes

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Working with strings

•  There are several standard predicates
for working with strings

•  A particular useful one is atom_codes/2

?- atom_codes(vicky,S).
S = [118,105,99,107,121]
yes

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Operators

•  As we have seen, in certain cases,
Prolog allows us to use operator
notations that are more user friendly

•  Recall, for instance, the arithmetic
expressions such as 2+2 which
internally means +(2,2)

•  Prolog also has a mechanism to add
your own operators

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Properties of operators

•  Infix operators
–  Functors written between their arguments
–  Examples: + - = == , ; . -->

•  Prefix operators
–  Functors written before their argument
–  Example: - (to represent negative numbers)

•  Postfix operators
–  Functors written after their argument
–  Example: ++ in the C programming language

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Precedence

•  Every operator has a certain
precedence to work out ambiguous
expressions

•  For instance, does 2+3*3 mean
2+(3*3), or (2+3)*3?

•  Because the precedence of + is greater
than that of *, Prolog chooses + to be
the main functor of 2+3*3

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Associativity

•  Prolog uses associativity to disambiguate
operators with the same precedence value

•  Example: 2+3+4
Does this mean (2+3)+4 or 2+(3+4)?
–  Left associative
–  Right associative

•  Operators can also be defined as non-
associative, in which case you are forced to
use bracketing in ambiguous cases
–  Examples in Prolog: :- -->

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Defining operators

•  Prolog lets you define your own
operators

•  Operator definitions look like this:

– Precedence:
number between 0 and 1200

– Type: the type of operator

:- op(Precedence, Type, Name).

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Types of operators in Prolog

•  yfx left-associative, infix
•  xfy right-associative, infix
•  xfx non-associative, infix
•  fx non-associative, prefix
•  fy right-associative, prefix
•  xf non-associative, postfix
•  yf left-associative, postfix

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Operators in SWI Prolog

