n, Johan Bos & Kristina Striegnitz

© Patrick Blackbur

Lecture 7: Definite Clause Grammars

* Theory

— Introduce context free grammars and
some related concepts

— Introduce definite clause grammars, the
Prolog way of working with context free
grammars (and other grammars too)

 Exercises
— Exercises of LPN: 7.1, 7.2, 7.3

— Practical work

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Context free grammars

Prolog offers a special notation for
defining grammars, namely DCGs or
definite clause grammars

So what is a grammar?

We will answer this question by
discussing context free grammars

CFGs are a very powerful mechanism,
and can handle most syntactic aspects
of natural languages (such as English
or Italian)

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Example of a CFG

S — np vp
np — detn
Vp — VvV np
Vp — V

det — the
det — a

n — man

n — woman
v — shoofts

n, Johan Bos & Kristina Striegnitz

© Patrick Blackbur

Ingredients of a grammar

 The — symbol is used to
define the rules

 The symbols s, np, vp,
det, n, v are called the
non-terminal symbols

 The symbols in italics are
the terminal symbols:
the, a, man,
woman, shoots

S — np vp
np — detn
Vp — VvV np
Vp =V

det — the
det — a

n — man

n — woman
v — shoots

n, Johan Bos & Kristina Striegnitz

© Patrick Blackbur

A little bit of linguistics

* The non-terminal symbols in this
grammar have a traditional meaning in
linguistics:

— np: noun phrase
— Vp: verb phrase
— det: determiner
— N noun

— V. verb

—S8. sentence

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

More linguistics

* In a linguistic grammar, the non-
terminal symbols usually correspond to
grammatical categories

* In a linguistic grammar, the terminal
symbols are called the lexical items, or
simply words (a computer scientist
might call them the alphabet)

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Context free rules

 The grammar contains
nine context free rules

* A context free rule consists of:
— A single non-terminal symbol
— followed by —

— followed by a finite sequence of
terminal or non-terminal symbols

S — np vp
np — detn
Vp — VvV np
Vp =V

det — the
det — a

n — man

n — woman
v — shoots

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Grammar coverage

» Consider the following string:

the woman shoots a man

* Is this string grammatical according to
our grammar?

 And if it is, what syntactic structure
does it have?

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Syntactic structure

S—npvp
np — det n
Vp — VvV np
vp — V
det — the
det — a
n — man
p n — woman
v — shoots

det n V det n

the woman shoots a man

n, Johan Bos & Kristina Striegnitz

© Patrick Blackbur

Parse trees

* Trees representing the syntactic
structure of a string are often called
parse trees

* Parse trees are important:
— They give us information about the string
— They give us information about structure

n, Johan Bos & Kristina Striegnitz

© Patrick Blackbur

Grammatical strings

 |If we are given a string of words, and a
grammar, and it turns out we can build a
parse tree, then we say that the string is
grammatical (with respect to the given
grammar)

— E.g., the man shoots is grammatical

n, Johan Bos & Kristina Striegnitz

© Patrick Blackbur

Grammatical strings

* |If we are given a string of words, and a
grammar, and it turns out we can build a
parse tree, then we say that the string is
grammatical (with respect to the given
grammar)

— E.qg., the man shoots is grammatical

 |If we cannot build a parse tree, the given
string is ungrammatical (with respect to the
given grammar)
— E.g., a shoots woman is ungrammatical

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Generated language

* The language generated by a
grammar consists of all the strings that
the grammar classifies as grammatical

For instance
a woman shoots a man

a man shoots

belong to the language generated by
our little grammar

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Recogniser

* A context free recogniser is a program
which correctly tells us whether or not a
string belongs to the language
generated by a context free grammar

* To put it another way, a recogniser is
a program that correctly classifies
strings as grammatical or
ungrammatical

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Information about structure

* But both in linguistics and computer
science, we are not merely interested Iin
whether a string is grammatical or not

* We also want to know why it is
grammatical: we want to know what its
structure is

* The parse tree gives us this structure

n, Johan Bos & Kristina Striegnitz

© Patrick Blackbur

Parser

* A context free parser correctly decides
whether a string belongs to the
language generated by a context free
grammar

 And it also tells us what its structure is

 TO sum up:
— A recogniser just says yes or no
— A parser also gives us a parse tree

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Context free language

« We know what a context free grammar is, but
what is a context free language?

« Simply: a context free language is a
language that can be generated by a context
free grammar

« Some human languages are context free,
some others are not
— English and lItalian are probably context free
— Dutch and Swiss-German are not context free

n, Johan Bos & Kristina Striegnitz

© Patrick Blackbur

Theory vs. Practice

* So far the theory, but how do we work
with context free grammars in Prolog?

* Suppose we are given a context free
grammar
— How can we write a recogniser for it?
— How can we write a parser for it?

* |n this lecture we will look at how to
define a recogniser

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

CFG recognition in Prolog

We shall use lists to represent a
sequence of tokens
[a,woman,shoots,a,man]

Therule s —npvp canbe
thought as concatenating an np-list
with a vp-list resulting in an s-list

We know how to concatenate lists in
Prolog: using append/3

So let's turn this idea into Prolog

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

CFG recognition using append/3

s(C):- np(A), vp(B), append(A,B,C).
np(C):- det(A), n(B), append(A,B,C).
vp(C):- v(A), np(B), append(A,B,C).
vp(C):- v(C).

det([the]). det([a]).

n([man]). n([woman]). v([shoots]).

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

CFG recognition using append/3

s(C):- np(A), vp(B), append(A,B,C).
np(C):- det(A), n(B), append(A,B,C).
vp(C):- v(A), np(B), append(A,B,C).

vp(C):- v(C).
det([the]). det([a]).
n([man]). n([woman]). v([shoots]).

?- s([the,woman,shoots,a,man]).

yes
2.

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

CFG recognition using append/3

s(C):- np(A), vp(B), append(A,B,C).
np(C):- det(A), n(B), append(A,B,C).
vp(C):- v(A), np(B), append(A,B,C).

vp(C):- v(C).

det([the]). det([a]).

n([man]). n([woman]). v([shoots]).
?-5(S).

S = [the,man,shoots,the,man];
S = [the,man,shoots,the,woman];
S = [the,woman,shoots,a,man]

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

CFG recognition using append/3

s(C):- np(A), vp(B), append(A,B,C).
np(C):- det(A), n(B), append(A,B,C).
vp(C):- v(A), np(B), append(A,B,C).

vp(C):- v(C).
det([the]). det([a]).
n([man]). n([woman]). v([shoots]).

?- np([the,woman]).
yes

?- np(X).

X = [the,man];

X = [the,woman]

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Problems with this recogniser

* |t doesn't use the input string to guide
the search

» Goals such as np(A) and vp(B) are
called with uninstantiated variables

* Moving the append/3 goals to the front
IS still not very appealing --- this will
only shift the problem --- there will be a
lot of calls to append/3 with
uninstantiated variables

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Difference lists

* A more efficient implementation can be
obtained by using difference lists

* This is a sophisticated Prolog technique
for representing and working with lists

 Examples:

a,b,c]-[] Is the list [a,b,C]
a,b,c,d]-[d] Is the list [a,b,C]
a,b,c|T]-T Is the list [a,b,C]

X-X IS the empty list []

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

CFG recognition using difference lists

s(A-C):- np(A-B), vp(B-C).
np(A-C):- det(A-B), n(B-C).
vp(A-C):- v(A-B), np(B-C).
vp(A-C):- v(A-C).

det([the|W]-W). det([a|W]-W).
n([man|W]-W). n(Jwoman|W]-W).

v([shoots|W]-W).

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

CFG recognition using difference lists

s(A-C):- np(A-B), vp(B-C).
np(A-C):- det(A-B), n(B-C).
vp(A-C):- v(A-B), np(B-C).
vp(A-C):- v(A-C).

det([the|W]-W). det([a|W]-W).
n([man|W]-W). n(Jwoman|W]-W).

v([shoots|W]-W).

?- s([the,man,shoots,a,man]-[]).

yes
2.

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

How does this work?

* Are there any tricks involved?
Draw search tree!

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

CFG recognition using difference lists

s(A-C):- np(A-B), vp(B-C).

np(A-C):- det(A-B), n(B-C).

vp(A-C):- v(A-B), np(B-C).

vp(A-C):- v(A-C).

det([the|W]-W). det([a|W]-W).

n([man|W]-W). n(Jwoman|W]-W). v([shoots|W]-W).

?-s(X-[]).
S = [the,man,shoots,the,man];
S = [the,man,shoots,a,man];

n, Johan Bos & Kristina Striegnitz

© Patrick Blackbur

Summary so far

* The recogniser using difference lists is a lot
more efficient than the one using append/3

 However, it is not that easy to understand
and it is a pain having to keep track of all
those difference list variables

|t would be nice to have a recogniser as
simple as the first and as efficient as the
second

* This is possible: using DCGs

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Definite Clause Grammars

« What are DCGs?

* Quite simply, a nice notation for writing
grammars that hides the underlying
difference list variables

* Let us look at three examples

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

DCGs: first example

S --> np, Vp.

np --> det, n.
vp -->V, np.

vp --> V.

det --> [the].
n -->[man].

det --> [a].
n --> [woman]j.

v --> [shoots].

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

DCGs: first example

S --> np, Vp.

np --> det, n.

vp --> Vv, np.

vp --> V.

det --> [the]. det --> [a].

n -->[man]. n --> [woman]j.

v --> [shoots].

?- s([a,man,shoots,a,woman],[]).

yes
2.

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

DCGs: first example

s --> np, vp.

np --> det, n.

vp --> Vv, np.

vp --> V.

det --> [the]. det --> [a].

n -->[man]. n --> [woman]j. v --> [shoots].
?2-s(X,[D.

S = [the,man,shoots,the,man];
S = [the,man,shoots,a,man];

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

What is going on?

 ADCG rule such as:
s -=> np,Vvp.
IS really a syntactic variant of:

S(A!B):' np(A!C)J Vp(C!B)

 DCGs simplify notation!

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

DCGs: second example

s --> s, conj, S. S --> np, Vp.

np --> det, n. vp -->V, np. vp --> V.

det --> [the]. det --> [a].

n -->[man]. n --> [woman]j. v --> [shoots].
conj --> [and]. conj --> [or]. conj --> [but].

 We added some recursive rules to the grammar...

« What and how many sentences does this grammar
generate?

« What does Prolog do with this DCG?

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

DCG without left-recursive rules

s --> simple_s, conj, s.
s --> simple_s.
simple_s --> np, vp.

np --> det, n.

vp --> v, np.

vp --> V.

det --> [the]. det --> [a].

n -->[man]. n --> [woman]j.
conj --> [and]. conj --> [or].

v --> [shoots].
conj --> [but].

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

DCGs are not magic!

* The moral: DCGs are a nice notation,
but you cannot write arbitrary context-
free grammars as a DCG and have it
run without problems

 DCGs are ordinary Prolog rules in
disguise
* S0 keep an eye out for left-recursion!

n, Johan Bos & Kristina Striegnitz

© Patrick Blackbur

DCGs: third example

* We will define a DCG for a formal
language

» A formal language is simply a set of
strings
— Formal languages are objects that

computer scientist and mathematicians
define and study

— Natural languages are languages that
human beings normally use to
communicate

* We will define the language a"b”

n, Johan Bos & Kristina Striegnitz

© Patrick Blackbur

DCGs: third example

- s>
 We will define the formal s-->lsr
language a"b” | > [a].

r --> [b].
?- s([a,a,a,b,b,b],[]).
yes
?- s([a,a,a,a,b,b,b],[]).
no

n, Johan Bos & Kristina Striegnitz

© Patrick Blackbur

DCGs: third example

. s --> [].

* We will define the formal S-> |8

language a"b" | > [al].

r --> [b].

?2-s(X,[D.
X=[]
X =[a,b];
X =[a,a,b,b];
X =[a,a,a,b,b,b]

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

« LPN 7.1
« LPN 7.2
« LPN 7.3

Exercises

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Summary of this lecture

We explained the idea of grammars
and context free grammars are

We introduced the Prolog technique of
using difference lists

We showed that difference lists can be
used to describe grammars

Definite Clause Grammars is just a nice
Prolog notation for programming with
difference lists

n, Johan Bos & Kristina Striegnitz

© Patrick Blackbur

Next lecture

* More Definite Clause Grammars
— Examine two important capabillities offered
by DCG notation
» Extra arguments
« Extra tests

— Discuss the status and limitations of
definite clause grammars

