
©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Lecture 12: Working with Files

•  This lecture is concerned with various
aspects of file handling and modularity

•  We will learn three things:
– How predicate definitions can be spread

across different files
– How to write modular software systems
– How to write results to files and how read

input from files

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Splitting programs over files

•  Many Prolog predicates make use of
the same basic predicates
– For instance: member/2, append/3

•  Of course you do not want to redefine it
each time you need it
– Prolog offers several way of doing this

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Reading in Programs

•  The simplest way of telling Prolog to
read in predicate definitions that are
stored in a file is using the square
brackets

?- [myFile].
{consulting(myFile.pl)…}
{myFile.pl consulted, 233 bytes}
yes
?-

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Reading in Programs

•  You can also consult more than one file
at once

?- [myFile1, myFile2, myFile3].
{consulting myFile1.pl…}
{consulting myFile2.pl…}
{consulting myFile3.pl…}

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Reading in Programs

•  You don`t need to do this interactively
•  Instead, you can use a directive in the

database
:- [myFile1, myFile2].

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Reading in Programs

•  Maybe several files, independently,
consult the same file

•  Extra check whether predicate
definitions are known already:
ensure_loaded/1

:- ensure_loaded([myFile1, myFile2]).

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Modules

•  Imagine you are writing a program that
manages a movie database

•  You designed two predicates:
– printActors/1
– printMovies/1

•  They are stored in different files
•  Both use an auxiliary predicate:

– displayList/1

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

The file printActors.pl

% This is the file: printActors.pl

printActors(Film):-
 setof(Actor,starring(Actor,Film),List),
 displayList(List).

displayList([]):- nl.
displayList([X|L]):-
 write(X), tab(1),
 displayList(L).

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

The file printMovies.pl

% This is the file: printMovies.pl

printMovies(Director):-
 setof(Film,directed(Director,Film),List),
 displayList(List).

displayList([]):- nl.
displayList([X|L]):-
 write(X), nl,
 displayList(L).

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

The file main.pl

% This is the file main.pl

:- [printActors].
:- [printMovies].

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

The file main.pl

% This is the file main.pl

:- [printActors].
:- [printMovies].

?- [main].

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

The file main.pl

% This is the file main.pl

:- [printActors].
:- [printMovies].

?- [main].
{consulting main.pl}

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

The file main.pl

% This is the file main.pl

:- [printActors].
:- [printMovies].

?- [main].
{consulting main.pl}
{consulting printActors.pl}

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

The file main.pl

% This is the file main.pl

:- [printActors].
:- [printMovies].

?- [main].
{consulting main.pl}
{consulting printActors.pl}
{printActors.pl consulted}

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

The file main.pl

% This is the file main.pl

:- [printActors].
:- [printMovies].

?- [main].
{consulting main.pl}
{consulting printActors.pl}
{printActors.pl consulted}
{consulting printMovies.pl}

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

The file main.pl

% This is the file main.pl

:- [printActors].
:- [printMovies].

?- [main].
{consulting main.pl}
{consulting printActors.pl}
{printActors.pl consulted}
{consulting printMovies.pl}
The procedure displayList/1 is

being redefined.
Old file: printActors.pl
New file: printMovies.pl
Do you really want to redefine it?
(y, n, p, or ?)

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Using Modules in Prolog

•  Built-in predicate module:
– module/1 and module/2
– To create a module/library

•  Built-in predicate use_module:
– use_module/1 and use_module/2
– To import predicates from a library

•  Arguments
– First argument gives name of module
– Second [optional] argument is a list of

exported predicates

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Note on Modules in Prolog

•  Not all Prolog interpreters support the
module system

•  SWI Prolog and Sicstus do
•  The Prolog module system is not ISO

compliant yet

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

The module printActors.pl

% This is the file: printActors.pl
:- module(printActors,[printActors/1]).

printActors(Film):-
 setof(Actor,starring(Actor,Film),List),
 displayList(List).

displayList([]):- nl.
displayList([X|L]):-
 write(X), tab(1),
 displayList(L).

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

The module printMovies.pl

% This is the file: printMovies.pl
:- module(printMovies,[printMovies/1]).

printMovies(Director):-
 setof(Film,directed(Director,Film),List),
 displayList(List).

displayList([]):- nl.
displayList([X|L]):-
 write(X), nl,
 displayList(L).

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

The revised file main.pl

% This is the revised file main.pl

:- use_module(printActors).
:- use_module(printMovies).

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

The revised file main.pl

% This is the revised file main.pl

:- use_module(printActors).
:- use_module(printMovies).

% This is the revised revised file main.pl

:- use_module(printActors,[printActors/1]).
:- use_module(printMovies,[printMovies/1]).

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Libraries

•  Many of the most common predicates
are predefined by Prolog interpreters

•  For example, in SWI prolog, member/2
and append/3 come as part of a library

•  A library is a module defining common
predicates, and can be loaded using
the normal predicates for importing
modules

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Importing Libraries

•  When specifying the name of a library
you want to use, you can tell that this
module is a library

•  Prolog will look at the right place,
namely a directory where all libraries
are stored

:- use_module(library(lists)).

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Writing to Files

•  In order to write to a file we have to
open a stream

•  To write the string 'Hogwarts' to a file
with the name hogwarts.txt we do:

 …
 open(‘hogwarts.txt‘, write, Stream),
 write(Stream, 'Hogwarts'),
 close(Stream),
 …

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Appending to Files

•  To extend an existing file we have to
open a stream in the append mode

•  To append the string 'Harry' to the file
with the name hogwarts.txt we do:

 …
 open(‘hogwarts.txt‘, append, Stream),
 write(Stream, 'Harry'),
 close(Stream),
 …

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Writing to files

•  Summary of predicates:
– open/3
– write/2
– close/1

•  Other useful predicates:
–  tab/2
– nl/1
–  format/3

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Reading from Files

•  Reading information from files is
straightforward in Prolog if the
information is given in the form of
Prolog terms followed by full stops

•  Reading information from files is more
difficult if the information is not given in
Prolog format

•  Again we use streams and the open
and close predicates

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Example: reading from files

•  Consider the file houses.txt:

•  We are going to write a Prolog program
that reads this information and displays
it on the screen

gryffindor.
hufflepuff.
ravenclaw.
slytherin.

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Example: reading from files

•  a Prolog program that reads this
information and displays it on the
screen: main:-

 open('houses.txt',read,S),
 read(S,H1),
 read(S,H2),
 read(S,H3),
 read(S,H4),
 close(S),
 write([H1,H2,H3,H4]), nl.

gryffindor.
hufflepuff.
ravenclaw.
slytherin.

houses.txt:

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Reading from files

•  Summary of predicates
– open/3
–  read/2
– close/1

•  More on read/2
– The read/2 predicate only works on Prolog

terms
– Also will cause a run-time error when one

tries to read at the end of a file

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Reaching the end of a stream

•  The built-in predicate
at_end_of_stream/1 checks whether
the end of a stream has been reached

•  It will succeed when the end of the
stream (given to it as argument) is
reached, otherwise if will fail

•  We can modify our code for reading in
a file using this predicate

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Using at_end_of_stream/1

main:-
 open('houses.txt',read,S),
 readHouses(S,Houses),
 close(S),
 write(Houses), nl.

readHouses(S,[]):-
 at_end_of_stream(S).

readHouses(S,[X|L]):-
 \+ at_end_of_stream(S),
 read(S,X),
 readHouses(S, L).

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

With green cuts

main:-
 open('houses.txt',read,S),
 readHouses(S,Houses),
 close(S),
 write(Houses), nl.

readHouses(S,[]):-
 at_end_of_stream(S), !.

readHouses(S,[X|L]):-
 \+ at_end_of_stream(S), !,
 read(S,X),
 readHouses(S, L).

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

With a red cut

main:-
 open('houses.txt',read,S),
 readHouses(S,Houses),
 close(S),
 write(Houses), nl.

readHouses(S,[]):-
 at_end_of_stream(S), !.

readHouses(S,[X|L]):-
 read(S,X),
 readHouses(S, L).

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Reading arbitrary input

•  The predicate get_code/2 reads the
next available character from the
stream
– First argument: a stream
– Second argument: the character code

•  Example: a predicate readWord/2 that
reads atoms from a file

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Using get_code/2

readWord(Stream,Word):-
 get_code(Stream,Char),
 checkCharAndReadRest(Char,Chars,Stream),
 atom_codes(Word,Chars).

checkCharAndReadRest(10, [], _):- !.
checkCharAndReadRest(32, [], _):- !.
checkCharAndReadRest(-1, [], _):- !.
checkCharAndReadRest(Char,[Char|Chars],S):-
 get_code(S,NextChar),
 checkCharAndRest(NextChar,Chars,S).

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Further reading

•  Bratko (1990): Prolog Programming for
Artificial Intelligence
– Practical applications

•  O`Keefe (1990): The Craft of Prolog
– For advanced Prolog hackers

•  Sterling (1990): The Art of Prolog
– Theoretically oriented

