Propositional Logic

CPSC 447 - Artificial Intelligence I

Propositions

 A proposition is a declarative sentence that is either true or false

Propositional Variables

- A *propositional variable* (*p*, *q*, *r*, *s*, ...) is a mathematical variable representing a proposition
- The value of a propositional variable is true, denoted by T, or false, denoted by F

Compound Propositions

- A compound proposition is a proposition constructed by combining propositions with logical operators
- Logical operators:
 - \neg : Negation
 - \lor : Disjunction
 - \land : Conjunction
 - ⊕: Exclusive Or
 - $\blacksquare \rightarrow: \mathsf{Conditional}$
 - $\blacksquare \leftrightarrow: \mathsf{Biconditional}$

Truth Tables

A truth table is used to summarize some or all of the possible values of one or more propositions in conjunction with any number of logical operations on those propositions.

Negation

■ The *negation* of a proposition *p* is denoted by ¬*p* and has the following truth table:

Conjunction

■ The *conjunction* of a propositions *p* and *q* is denoted by *p* ∧ *q* and has the following truth table:

р	q	$p \wedge q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Disjunction

■ The *disjunction* of propositions *p* and *q* is denoted by *p* ∨ *q* and has the following truth table:

р	q	$p \lor q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Exclusive Or

■ The *exclusive or* of propositions *p* and *q* is denoted by *p* ⊕ *q* and has the following truth table:

р	q	$\pmb{p}\oplus \pmb{q}$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

Implication

• The conditional statement or implication of propositions p and q is denoted by $p \rightarrow q$ and has the following truth table:

р	q	p ightarrow q
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

- $p \rightarrow q$ is read "If p then q"
- In p → q, p is the hypothesis (antecedent or premise) and q is the conclusion (or consequence)

Converse, Contrapositive, and Inverse

• From $p \rightarrow q$ we can form new conditional statements

- $\blacksquare \ q \to p \text{ is the } converse \text{ of } p \to q$
- $\blacksquare \ \neg q \rightarrow \neg p$ is the *contrapositive* of $p \rightarrow q$

•
$$\neg p \rightarrow \neg q$$
 is the *inverse* of $p \rightarrow q$

Biconditional

• The *biconditional* of propositions p and q is denoted by $p \leftrightarrow q$ and has the following truth table:

р	q	$p \leftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

• $p \leftrightarrow q$ is read "p if and only if q"

Truth Tables for Compound Propositions

■ Truth table construction:

- We need a row for every possible combination of truth values for the atomic propositions
- We need a column for the compound proposition
- We need a column for each subexpression (including the atomic propositions)

Equivalent Propositions

- Two propositions are *equivalent* if they always have the same truth value
- Example: the conditional is equivalent to the contrapositive

р	q	$\neg p$	eg q	p ightarrow q	eg q ightarrow eg p
Т	Т	F	F	Т	Т
Т	F	F	Т	F	F
F	Т	Т	F	Т	Т
F	F	Т	Т	Т	Т

Precedence of Logical Operators

Precedence
1
2
3
4
5

Tautologies, Contradictions, and Contingencies

• A *tautology* is a proposition that is always true

• Example: $p \lor \neg p$

A contradiction is a proposition that is always false

• Example: $p \land \neg p$

A contingency is a proposition that is neither a tautology nor a contradiction

Logic Equivalence

- Two compound propositions p and q are logically equivalent if $p \leftrightarrow q$ is a tautology
- This is denoted as $p \equiv q$
- Logical equivalence can be shown with a truth table; the compound propositions p and q are equivalent if and only if the columns in the truth table agree

De Morgan's Laws

$$\neg (p \land q) \equiv \neg p \lor \neg q$$

$$\neg (p \lor q) \equiv \neg p \land \neg q$$

■ Truth table for second law:

р	q	$\neg p$	$\neg q$	$p \lor q$	$ eg(p \lor q)$	$ eg p \land eg q$
Т	Т	F	F	Т	F	F
Т	F	F	Т	Т	F	F
F	Т	Т	F	Т	F	F
F	F	Т	Т	F	Т	Т

Key Logical Equivalences

Identity Laws: $p \land T \equiv p$,Domination Laws: $p \lor T \equiv T$ Idempotent Laws: $p \lor T \equiv T$ Idempotent Laws: $p \lor p \equiv p$,Double Negation Laws: $\neg(\neg p) \equiv p$ Negation Laws: $p \lor \neg p \equiv T$ Commutative Laws: $p \lor q \equiv q \lor$ Associative Laws: $(p \land q) \land r$

Distributive Laws:

Absorption Laws:

 $p \wedge T \equiv p, \quad p \vee F \equiv p$ $p \lor T \equiv T, \quad p \land F \equiv F$ $p \lor p \equiv p, \quad p \land p \equiv p$ $p \lor \neg p \equiv T, \quad p \land \neg p \equiv F$ $p \lor q \equiv q \lor p$, $p \land q \equiv q \land p$ $(p \land q) \land r \equiv p \land (q \land r)$ $(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \lor (q \land r)) \equiv (p \lor q) \land (p \lor r)$ $(p \land (q \lor r)) \equiv (p \land q) \lor (p \land r)$ $p \lor (p \land q) \equiv p$ $p \wedge (p \vee q) \equiv p$

Logical Equivalences Involving Conditional Statements

- $\bullet \ p \to q \equiv \neg p \lor q$
- $\bullet \ p \to q \equiv \neg q \to \neg p$
- $\bullet \ p \lor q \equiv \neg p \to q$
- $p \land q \equiv \neg (p \rightarrow \neg q)$

•
$$\neg(p \rightarrow q) \equiv p \land \neg q$$

- $(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$
- $(p \rightarrow r) \land (q \rightarrow r) \equiv (p \lor q) \rightarrow r$
- $(p \rightarrow q) \lor (p \rightarrow r) \equiv p \rightarrow (q \lor r)$
- $(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$

Equivalence Proofs

- A compound proposition can be replaced by a logically equivalent compound proposition without changing its truth value
- We can show that two propositions are logically equivalent by developing a series of logically equivalent statements
- To prove that *A* ≡ *B*, we can develop a series of equivalences beginning with *A* and ending with *B*:

.

$$\begin{array}{rrrr} A & \equiv & A_1 \\ & \equiv & A_2 \\ & \vdots \\ & \equiv & B \end{array}$$

Equivalence Proof Example

Show that $\neg (p \lor (\neg p \land q))$ is logically equivalent to $\neg p \land \neg q$

$$\neg (p \lor (\neg p \land q)) \equiv \neg p \land \neg (\neg p \land q)$$
$$\equiv \neg p \land (\neg (\neg p) \lor \neg q)$$
$$\equiv \neg p \land (p \lor \neg q)$$
$$\equiv (\neg p \land p) \lor (\neg p \land \neg q)$$
$$\equiv F \lor (\neg p \land \neg q)$$
$$\equiv (\neg p \land \neg q) \lor F$$
$$\equiv (\neg p \land \neg q)$$

by De Morgan's law by De Morgan's law by the double negation law by the distributive law by the negation law by the commutative law by the identity law

Equivalence Proof Example

Show that $(p \land q)
ightarrow (p \lor q)$ is a tautology

$$\begin{array}{lll} (p \wedge q) \rightarrow (p \vee q) & \equiv \neg (p \wedge q) \vee (p \vee q) & \text{by} p \rightarrow q \equiv \neg p \vee q \\ & \equiv & (\neg p \vee \neg q) \vee (p \vee q) & \text{by De Morgan's law} \\ & \equiv & (\neg p \vee p) \vee (\neg q \vee q) & \text{by the associative and} \\ & \vdots & & \text{commutative laws} \\ & \equiv & T \vee T & & \text{by the negation law} \\ & \equiv & T & & \text{by the domination law} \end{array}$$