
Logic
CPSC 447 - Artificial Intelligence I



General AI Process

data → learning → model → inference

question → inference → answer

Examples: search problems, games, constraint satisfaction
problems (CSP), Markov decision processes (MDP), Bayesian
networks



Modeling Paradigms

State-based models: search problems, games, MDPs
Applications: route finding, game playing, etc.

Think in terms of states, actions, and costs

Variable-based models: CSPs, Bayesian networks
Applications: scheduling, tracking, medical diagnosis, etc.

Think in terms of variables and factors

Logic-based models: propositional logic, first-order logic
Applications: theorem proving, verification, reasoning

Think in terms of logical formulas and inference rules



Goals of a Logic Language

Represent knowledge about the world

Reason with that knowledge



Ingredients of a Logic
Syntax: defines a set of valid formulas

Example: Rain ∧ Wet

Semantics: for each formula f , specify a set of models M(f )
Example:

Rain Wet

T T
T F
F T
F F

Inference rules: given KB, what new formulas f can be derived?
Example: from Rain ∧ Wet, derive Rain



Inference Algorithm

Inference algorithm: repeatedly apply inference rules to derive
new formulas.

Desiderata: soundness and completeness
entailment (KB � f )

derivation (KB ` f )



Formulas

Propositional logic: any legal combination of symbols

(Rain ∧ Snow) → (Traffic ∨ Peaceful) ∧ Wet

Propositional logic with only Horn clauses (restricted)

(Rain ∧ Snow) → Traffic



Tradeoffs

Formulas allowed Inference rule Complete?

Propositional logic modus ponens no
Horn clauses modus ponens yes
Propositional logic resolution yes



Resolution Algorithm

Relationship between entailment and contradiction

Algorithm: resolution-based inerence
1 Add ¬f to KB

2 Convert all formulas to conjunctive normal form (CNF)

3 Repeatedly apply resolution rule

4 Return entailment iff derive false



Modus Ponens versus Resolution

Horn clauses Any clauses

Inference rule modus ponens resolution
Complexity linear time exponential time
Expressiveness less expressive more expressive



Syntax of First-Order Logic (FOL)

Terms (refer to objects):
Constant symbol

Variable

Function of terms

Formulas (refer to truth values)
Atomic formulas (atoms)

Connectives applied to formulas

Quantifiers applied to formulas



Models in First-Order Logic

A model represents a possible situation in the world.

A model w in propositional logic maps propositional symbols to
truth values

A model w in first-order logic maps to:
constant symbols to objects

predicate symbols to tuples of objects



A Restriction on Models

Unique names assumption: each object has at most one
constant symbol.

Domain closure: each object has at least one constant symbol

That is, constant symbol ↔ object



Propositionalization

If one-to-one mapping between constant symbols and objects
(unique names and domain closure), then FOL is syntactic
sugar for propositional logic

Example FOL knowledge base
Student(alice) ∧ Student(bob)
∀x Student(x) → Person(x)
∃x Student(x) ∧ Creative(x)

Example propositional logic knowledge bas:
StudentAlice ∧ StudentBob
(StudentAlice → PersonAlice) ∧ (StudentBob → PersonBob)
(StudentAlice ∧ CreativeAlice) ∨ (StudentBob ∧ CreativeBob)

Point: use any inference algorithm for propositional logic



Modus Ponens

Given P(alice) and ∀x P(x) → Q(x)

Problem: cannot infer Q(alice) because P(x) and P(alice) do
not match

Solution: substitution and unification



Substitution

Definition: A substitution θ is a mapping from variables to
terms. Subst[θ, f ] denotes the result of performing substitution
θ on f

Example:

Subst[{x/alice},P(x)] = P(alice)



Unification

Definition: Unification takes two formulas f and g and returns
a substitution θ with is the most general unifier:
Unify [f , g ] = θ such that Subst[θ, f ] = Subst[θ, g ] or “fail” if
no such θ exists.

Example:

Unify [Knows(alice, arithmetic),Knows(x , arithmetic)] = {x/alice}



Modus Ponens (FOL)

a′
1, . . . a′

k , ∀x1 . . . ,∀xn(a1 ∧ . . . ∧ ak) → b
b′

Get the most general unifier θ on premises:

θ = Unify [a′
1 ∧ . . . ∧ a′

k , a1 ∧ . . . ∧ ak ]

Apply θ to conclusion:

Subst[θ, b] = b′


