Virtual Memory Systems

CPSC 235 - Computer Organization

References

m Slides adapted from CMU

http://www.cs.cmu.edu/~213/schedule.html

Review: Virtual Memory and Physical
Memory

Physical page (DRAM)
number or Bk
Valid _disk address PPO
VP2
PTE O[O null VP 7
1 — VP4 PP3
1 —
0 L]
1 CtS
0 null . Virtual memory
0 LS So (disk)
Preslil o e
Memory resident ~~. RANE
page table AN
(DRAM) ~

m A page table contains page table entries (PTEs) that map
virtual pages to physical pages

Translating with a k-level Page Table

VIRTUAL ADDRESS

n-1 p-1 0
fVPN1 [ven2 | L VPNK [vPO

[——

Level 1 Level 2 Level k

page table page table page table

J N
N L[PPN }—‘

m-1 l p-1 0
PPN | pPO |

PHYSICAL ADDRESS

Translation Lookaside Buffer (TLB)

CPU chip
--
LB :
@veN| [PTEI®
Processor Trans- || @ Cache/
VA lation | i PA memory
® Dpata

m A TLB hit eliminates the kK memory accesses required to do a
page table lookup

Recall: Set Associative Cache

1 valid bit ttag bits B =25 bytes
perline per line per cache block
/_A_\ T

Vaia] [Tag [[o[1] - []
Set 0: : E lines per set
Vaia] [Tag [0 [1 [-~ [B1]
aia] [Tag J[o0]1] -~ [B-1]
Set 1: :
§=20sets Lrg Jloft] -~ [B1]
[vai] [e][0 1] -~ [6]
Set S-1: :
Vaia] [Tag |[o[1] - [1]

Cache size: C =B x E x S data bytes

Review of Symbols

m Basic Parameters
m N =2": number of addresses in virtual address space
m M = 2™: number of addresses in physical address space
m P = 2P: page size (bytes)
m Components of the virtual address (VA)
m TLBI: translation lookaside buffer index
m TLBT: translation lookaside buffer tag
m VPO: virtual page offset
m VPN: virtual page number
m Components of the physical address (PA)
m PPO: physical page offset (same as VPO)
m PPN: physical page number

Simple Memory System Example

m Addressing
m 14-bit virtual addresses
m 12-bit physical addresses
m Page size = 64 bytes

Virtual
accross | [T T 1
VPN VPO
(Virtual page number) (Virtual page offset)
. 1" 10 9 8 7 6 5 4 3 2 1 0
ress [B [T T

(Physical page number) (Physical page offset)

Simple Memory System

m 16 entries

m 4-way associative

TLBT TLBI >
13 12 11 10 9 8 6 5 4 3 1 0
dross | [T 1 [T 1 []
address
VPN VPO
Set Tag PPN Valid Tag PPN Valid Tag PPN Valid Tag PPN Valid
0 03 - [09 oD 1 00 - 0 07 02 1
1 03 2D 1 02 - 0 04 - 0 0A = 0
2 02 - 0 08 - 0 06 - 0 03 - 0
3 07 - 0 03 oD 1 0A 34 1 02 - [

TLB

Simple Memory System Page Table

m Only showing the first 16 entries (out of 256)

VPN PPN Valid VPN PPN Valid
00 28 1 08 13 1
01 - 0 09 17 1
02 33 1 0A 09 1
03 02 1 0B - 0
04 - 0 oC - 0
05 16 1 oD 2D 1
06 - 0 OE 1 1
07 - 0 OF ob 1

Simple Memory System Cache

m 16 lines, 4-byte cache line size
m Physically addressed
m Direct mapped

cT cl co
1 10 9 8 7 6 5 4 3 2 0
Physical T T 1]
address
PPN 0 —
Id« _Tag Valiid BkO Bki1 Bk2 Bk3

19 1 99 [11 [23] 11

00 | 02 [o4 | o8

43 | 6D | 8F | 09
3 | 72 [Fo | 1D

1 | c2 | OF | o3
3a [00 | 51 [89

93 | 15 [DA | 3B

04 | 96 [34 | 15
83 | 77 | 18 | D3

TMOOW>» ©®~Noa & 0N = O
N
R
ol=|=|o|o|=lo|=|=|o|=|=|o|«|o

Address Translation Example

m Virtual Address: 0x3d4 = 00001111 010100
m VPN: 0xOF, TLBI: 0x03, TLBT: 0x03, PPN: 0x0D
m Hit, no fault

b TLBT >+ TLBl >
13 12 11 10 9 8 7 6

wmew L T T T T T T T T T T T 1]
VPN VPO

Set Tag PPN Valid Tag PPN Valid Tag PPN Valid Tag PPN Valid
0 03 = 0 09 oD 1 00 - 0 07 02 1

1 03 2D 1 02 - 0 04 - 0 0A - 0
2 02 - 0 08 - 0 06 - 0 03 - 0
3 07 = 0 03 oD 1 0A 34 1 0

02 =

Address Translation Example

m Physical Address:

Physical
address

m PPN: 001101, PPO: 010100
m CO: 0, Cl: 0x5, CT: 0x0D, Hit: yes, Byte: 0x36

1

PPN PPO
Id« Tag Valiid BKO Bk1 Bk2 Bk3
19 1 99 1 23 1

00 | 02 | 04 | 08

43 | 6D | 8 | 09
3 | 72 [Fo | 1D

1 | c2 [oF | o3
51 | 89

93 | 15 [DA | 3B

04 | 96 | 34 | 15
83 | 77 | 18 | D3

TMOO@>0®No0 & @K = O
»
R

o|a|= o o|a|o|=|=|ela|=o <|o
@
>
g
8

Intel Core i7 Memory System

Processor package

Core x4
Instruction MMU
Registers fetch ’ (addr translation) ‘
L1 d-cache L1 i-cache L1d-TLB L1i-TLB
32 KB, 8-way 32 KB, 8-way 64 entries, 4-way 128 entries, 4-way

L2 unified cache
256 KB, 8-way

L2 unified TLB
512 entries, 4-way

3170 other
QuickPath interconnect [* 1 %°reS
[+iTo IO
bridge

I

L3 unified cache
8 MB, 16-way
(shared by all cores)

]

DDR3 Memory controller
(shared by all cores)

(XY

1l

Main memory

End-to-end Core i7 Address Translation

L2, L3, and
main memory

x
L1 L1
hit miss

L1 d-cache
(64 sets, 8 lines/set)

Page tables

Core i7 Level 1-3 Page Table Entries

63 62

52 51 12 11 9 8 7 6 5 4 3 2 1 o0
XD | Unused ‘ Page table physical base addr | Unused ‘ G PS ‘ ‘ A | cb ‘ WT ‘U/S R/W‘F=1 ‘

Available for OS (page table location on disk) ‘P=0|

m Each entry references a 4K child page table:

P: child page table present in physical memory

R/W: read-only or read-write access permission for all reachable
pages

U/S: user or supervisor (kernel) mode access permission for all
reachable pages.

WT: Write-through or write-back cache policy for child page
table

A: reference bit (set by MMU on reads and writes, cleared by
software)

PS: Page size either 4KB or 4MB (defined for level 1 PTEs only)
Page table physical base address: 40 most significant bits or
physical page table address (forces page tables to be 4KB
aligned)

XD: disable or enable instruction fetches from all pages
reachable from this PTE

Core i7 Page Table Translation

. . s . @ Virtual
VPN 1 VPN 2 VPN VPN 4 VPO]
address
L1PT L2PT L3PT L4PT
Page global | Page upper | Pagemiddie | Page
R 0| dredtony lu diectory | diectory |ss _table
Physical
address Offset into
Pt e 12 physical and
° LIPTE - L2 PTE) L[TBPTE- |/ virtual page
Physical
address
51268 168 2mB 4KB | of page
region region region region
perentty perentry perentry perentry
P
X 2 Physical
PPN PPO |

address

Trick for Speeding Up L1 Access

m Observation

Bits that determine the Cl are identical in virtual and physical
address

Can index into cache while address translation is taking place
Generally there is a hit in the TLB, so PPN bits (CT bits) are
available quickly

“Virtually indexed, physically tagged”

Cache carefully sized to make this possible

Virtual Address Space of a Linux

Different for
each process L

Identical for
each process

Process-specific data
structures
(e.g.. page tables,
task and mm structs, kernel
stack)

Physical memory

Kernel code and data

User stack

Memory mapped region
for shared libraries

t

0x400000

Runtime heap (via malloc)

Uninitialized data (.bss)

Initialized data (.data)

Code (. text)

Kernel
virtual
memory

Process
virtual
memory

Process

Linux Organizes VM as Collection of
“Areas”

Process virtual memory

:
© \

©

- N\ Shared braries

Data

Code

m pgd: page global directory address; points to L1 page table
m vm_prot: read/write permissions for this area
m vm_flags: pages shared with other processes or private to this

process

Linux Page Fault Handling

m Read from a non-existing page: segmentation fault

m Read from data area: normal page fault

m Write to text area: violating permission by writing to a
read-only page; Linux reports a segmentation fault

Memory Mapping

m VM areas initialized by associating them with disk objects
m Called memory mapping
m Area can be backed by (that is, get its initial values from):
m Regular file on disk (for example, an executable object file)
m Initial page bytes come from a section of a file
m Anonymous file (that is, nothing)
m First fault will allocate a physical page full of zeros
m Once the page is written to (dirtied), it is like any other page
m Dirty pages are copied back and forth between memory and a

special swap file

Review: Memory Management and
Protection

m Code and data can be isolated or shared among processes

Virtual address spaces Physical memory

Address translation

VP A1

Process i VP 2
N-1 \
Shared page

P

VP 1

Process j: oo

M-1

Sharing Revisited: Shared Objects

Process 1 maps the shared object (on disk)

Process 2 maps the same shared object

Note that the virtual addresses can be different, but the
difference must be a multiple of the page size

Two processes mapping a private copy-on-write (COW) object
Area flagged as private copy-on-write

PTEs in private areas are flagged as read-only

Process 1 Physical Process 2
virtual memory memory virtual memory

Private
copy-on-write object

Sharing Revisited: Private Copy-on-Write
(COW) Objects

Instruction writing to private page triggers protection fault
Handler creates new R/W page

Instruction restarts upon handler return

Copying deferred as long as possible

Finding Shareable Pages

m Kernel Same-Page Merging
m OS scans through all of physical memory looking for duplicate
pages
m When found, merge into a single copy marked as copy-on-write
m Implemented in Linux kernel in 2009
m Limited to pages marked as likely candidates
m Especially useful when processor running many virtual machines

Summary

m VM requires hardware support
m Exception handling mechanism
m TLB
m Various control registers

m VM requires OS support
m Managing page tables
m Implementing page replacement policies
m Managing file system

m VM enables many capabilities
m Loading programs from memory
m Providing memory protection

