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Overview

Address Spaces
Virtual Memory as a tool for caching
Virtual Memory as a tool for memory management
Virtual Memory as a tool for memory protection
Address translation



A System Using Physical Addressing

Used in “simple” systems like embedded microcontrollers in
devices like cars, elevators, etc.



A System Using Virtual Addressing

Used in all modern servers, laptops, and smart phones
One of the great ideas in computer science



Address Spaces

Linear address space: ordered set of contiguous non-negative
integer addresses
Virtual address space: set of N = 2n virtual addresses
Physical address space: Set of M = 2m physical addresses



Why Virtual Memory (VM)?

Uses main memory more efficiently
Use DRAM as a cache for parts of a virtual address space

Simplifies memory management
Each process gets the same uniform linear address space

Isolates address spaces
One process cannot interfere with another’s memory
User program cannot access privileged kernel information and
code



VM as a Tool for Caching

Conceptually, virtual memory is an array of N contiguous bytes
stored on disk.
The contents of the array on disk are cached in physical
memory (DRAM cache)

These cache blocks are called pages (size is P = 2p bytes)



DRAM Cache Organization

DRAM cache organization driven by the enormous miss penalty
DRAM is about 10x slower than SRAM
Disk is about 10,000x slower the DRAM
Time to load block from disk > 1 ms

Consequences
Large page (block) size: typically 4 KB

Linux “huge pages” are 2 MB (default) to 1 GB
Full associative

Any virtual page can be placed in any physical page
Requires a “large” mapping function - different from cache
memories

Highly sophisticated, expensive replacement algorithms
Too complicated and open-ended to be implemented in
hardware

Write-back rather than write-through



Enabling Data Structure: Page Table

A page table is an array of page table entries (PTEs) that
maps virtual pages to physical pages

Per process kernel data structure in DRAM



Page Hit

Page hit: reference to VM word that is in physical memory
(DRAM cache hit)



Page Fault

Page fault: reference to VM word that is not in physical
memory (DRAM cache miss)



Triggering a Page Fault

User writes to memory location

That portion (page) of user’s memory is currently on disk

Memory management unit (MMU) triggers page fault exception
(More details later)
Raises privilege level to supervisor mode
Causes procedure call to software page fault handler



Handling a Page Fault

Page miss causes page fault (an exception)
Page fault handler selects a victim to be evicted (here VP 4)



Handling a Page Fault

Page miss causes page fault (an exception)
Page fault handler selects a victim to be evicted (here VP 4)



Completing Page Fault

Page fault handler executes return from interrupt (iret)
instruction

Like ret, but also restores privilege level
Return to instruction that caused page fault
But, this time there is no page fault



Allocating Pages

Allocating a new page (VP 5) of virtual memory

Subsequent miss will bring it into memory



Locality to the Rescue Again
Virtual memory seems terribly inefficient, but it works because
of locality

At any point in time, programs tend to access a set of active
virtual pages called the working set

Programs with better temporal locality will have smaller
working sets

If the working set size is less than the main memory size:
good performance for one process (after cold misses)

If the working set size is greater than main memory size:
Thrashing: performance meltdown where pages are swapped
(copied) in and out continuously
If multiple processes run at the same time time, thrashing
occurs if their total working set size is greater than main
memory size



VM as a Tool for Memory Management

Key idea: each process has its own virtual address space
It can view memory as a simple linear array
Mapping function scatters addresses through physical memory

Well-chosen mappings can improve locality



VM as a Tool for Memory Management

Key idea: each process has its own virtual address space
It can view memory as a simple linear array
Mapping function scatters addresses through physical memory

Well-chosen mappings can improve locality
Simplifying memory allocation

Each virtual page can be mapped to any physical page
A virtual page can be stored in different physical pages at
different times



VM as a Tool for Memory Management

Sharing code and data among processes
Map virtual pages to the same physical page



Simplified Linking and Loading

Linking
Each program has similar virtual address space
Code, data, and heap always start at the same addresses

Loading
execve allocated virtual pages for .text and .data sections
and creates PTEs marked as invalid
The .text and .data sections are copied, page by page, on
demand by the virtual memory system



VM as a Tool for Memory Protection

Extend PTEs with permission bits
Memory management unit (MMU) checks these bits on each
access



VM Address Translation

Virtual address space
V = {0, 1, . . . ,N − 1}

Physical address space
P = {0, 1, . . . ,M − 1}

Address Translation
MAP : V → P ∪ ∅
For virtual address a:

MAP(a) = a′ if data at virtual address a is at physical address
a′ in P
MAP(a) = ∅ if data at virtual address a is not in physical
memory; either invalid or stored on disk



Summary of Address Translation Symbols

Basic Parameters
N = 2n: number of addresses in virtual address space
M = 2m: number of addresses in physical address space
P = 2p: page size (bytes)

Components of the virtual address (VA)
VPO: virtual page offset
VPN: virtual page number

Components of the physical address (PA)
PPO: physical page offset (same as VPO)
PPN: physical page number



Address Translation with a Page Table



Address Translation: Page Hit

1 Processor sends virtual address to MMU
2 MMU requests PTE from page table in memory
3 MMU fetches PTE from page table in memory
4 MMU sends physical address to cache/memory
5 Cache/memory sends data word to processor



Address Translation: Page Fault

1 Processor sends virtual address to MMU
2 MMU requests PTE from page table in memory
3 MMU fetches PTE from page table in memory
4 Valid bit is zero, so MMU triggers page fault exception
5 Handler identifies victim (and, if dirty, pages it out to disk)
6 Handler pages in new page and updates PTE in memory
7 Handler returns to original process, restarting faulting

instruction



Integrating VM and Cache



Speeding up Translation with a TLB

Page table entries (PTEs) are cached in L1 like any other
memory word

PTEs may be evicted by other data references
PTE hit still requires small L1 delay

Solution: Translation Lookaside Buffer (TLB)
Small set-associative hardware cache in MMU
Maps virtual page numbers to physical page numbers
Contains complete page table entries for small number of pages



Summary of Address Translation Symbols

Basic Parameters
N = 2n: number of addresses in virtual address space
M = 2m: number of addresses in physical address space
P = 2p: page size (bytes)

Components of the virtual address (VA)
TLBI: translation lookaside buffer index
TLBT: translation lookaside buffer tag
VPO: virtual page offset
VPN: virtual page number

Components of the physical address (PA)
PPO: physical page offset (same as VPO)
PPN: physical page number



Accessing the TLB

The MMU uses the VPN portion of the virtual address to
access the TLB:



TLB Hit

A TLB hit eliminates a cache/memory access



TLB Miss

A TLB miss incurs an additional cache/memory access (the
PTE)



Multi-Level Page Tables

Suppose:
4 KB (212) page size, 48-bit addressable space, 8-byte PTE

Problem:
Would need a 512 GB page table

Common solution: multi-level page table

Example: 2-level page table
Level 1 table: each PTE points to a page table (always memory
resident)
Level 2 table: each PTE points to a page (paged in and out like
any other data)



A Two-Level Page Table Hierarchy



Translating with a k-level Page Table



Summary

Programmer’s view of virtual memory
Each process has its own private linear address space
Cannot be corrupted by other processes

System view of virtual memory
Uses memory efficiently by caching virtual memory pages

Efficient because of locality
Simplifies memory management and programming
Simplifies protection by providing a convenient interpositioning
point to check permissions

Implemented via a combination of hardware and software
MMU, TLB, exception handling mechanisms part of hardware
Page fault handlers, TLB management performed in software


