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Writing and Reading Memory

m Write
m Transfer data from CPU to memory
m Example: movq %rax, 8(Jrsp)
m “Store” operation

m Read
m Transfer data from memory to CPU
m Example: movq 8(%rsp), %rax
m “Load"” operation



Traditional Bus Structure Connecting
CPU and Memory

m A bus is a collection of parallel wires that carry address, data,
and control signals

m Buses are typically shared by multiple devices
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Memory Read Transaction (1)

m Example: movq A, Y%rax

m CPU places address A on the memory bus
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Memory Read Transaction (2)

m Example: movq A, Yrax

m Main memory reads A from the memory bus, retrieves word x,
and places it on the bus
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Memory Read Transaction (3)

m Example: movq A, Y%rax

m CPU read word x from the bus and copies it into register %rax
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Memory Write Transaction (1)

m Example: movq %rax, A

m CPU places address A on the memory bus; main memory reads
it and waits for the corresponding data word to arrive
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Memory Write Transaction (2)

m Example: movq %rax, A

m CPU places data word y on the bus
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Memory Write Transaction (2)

m Example: movq %rax, A

m Main memory reads data word y from the bus and stores it at

address A
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Random-Access Memory (RAM)

m Key features
m RAM is traditionally packaged as a chip or embedded as part of
processor chip
m Basic storage unit is normally a cell (one bit per cell)
m Multiple RAM chips form a memory
m RAM comes in two varieties
m SRAM (static RAM)
m DRAM (Dynamic RAM)



RAM Technologies

= DRAM

m 1 transistor 4+ 1 capacitor per bit

m Must refresh state periodically
m SRAM

m 6 transistors per bit

m Holds state indefinitely (but will still lose data on power loss)
m Trends

m SRAM scales with semiconductor technology

m DRAM scaling limited by need to minimum capacitance



Enhanced DRAMSs

m Operation of DRAM cell has not changed since its invention
m Commercialized by Intel in 1970

m DRAM cores with better interface logic and faster 1/0:
m Synchronous DRAM (SDRAM)
m Uses a conventional clock signal instead of asynchronous
control
m Double data-rate synchronous DRAM (DDR SDRAM)
m Double edge clocking sends two bits per cycle per pin
m Different types distinguished by size of small prefetch buffer;
DDR (2 bits), DDR2 (4 bits), DDR3 (8 bits), DDR4 (16 bits)



Conventional DRAM Organization

m d x w DRAM
m d - w total bits organized as d supercells of size w bits
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Reading DRAM Supercell (2,1)

m Step 1(a): Row access strobe (RAS) selects row 2
m Step 1(b): Row 2 copied from DRAM array to row buffer
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Reading DRAM Supercell (2,1)

m Step 2(a): Column access strobe (CAS) selects column 1

m Step 2(b): Supercell (2,1) copied from buffer to data lines, and
eventually back to the CPU

m Step 3: All data written back to row to provide refresh
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Memory Modules

addr (row = i, col = j)
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The CPU-Memory Gap

m The gap widens between DRAM, disk, and CPU speeds
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Locality

m Principle of Locality: Programs tend to use data and
instructions with addresses near or equal to those they have
used recently

m Temporal locality:

m Recently referenced items are likely to be referenced again in
the near future

m Spatial locality:

m Items with nearby addresses tend to be referenced close
together in time



Locality Example

sum = O;

for (i = 0; i < n; i++) {
sum += ali];

}

return sum

m Data references
m References array elements in succession (spatial)
m Reference variable sum each iteration (temporal)
m Instruction references
m Reference instructions in sequence (spatial)
m Cycle through loop repeatedly (temporal)



Qualitative Estimates of Locality

m Claim: being able to look at code and get a qualitative sense of
its locality is a good skill for a professional programmer

m Question: Does this function have good locality with respect to
array a?

int sum_array_rows(int a[M][N]) {
int i, j, sum = O;
for (i = 0; i < M; i++) {
for (j = 0; j < N; j++) }
sum += al[i] [j];
}
}

return sum;



Locality Example

m Question: can you permute the loops so that the function

scans the 3D array with a stride-1 reference pattern (and thus
have good spatial locality)?

int sum_array_3d(int a[M] [N][N]) {
int i, j, k, sum = 0;

for (i = 0; i < M; i++) {
for (j = 0; j < N; j++) }
for (k = 0; k < M; k++) {
sum += alk][i][j];
}
}
}

return sum;



Memory Hierarchies

m Some fundamental and enduring properties of hardware and
software:

m Fast storage technologies cost more per byte, have less capacity,
and require more power (heat!).

m The gap between CPU and main memory speed is widening

m Well-written programs tend to exhibit good locality

m These fundamental properties complement each other
beautifully

m The suggest an approach for organizing memory and storage
systems known as a memory hierarchy



Example Memory Hierarchy
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Caches

Cache: A smaller, faster storage device that acts as a staging
area for a subset of the data in a larger, slower device

Fundamental idea of a memory hierarchy:

m For each k, the faster, smaller device at level k serves as a
cache for the larger, slower device at level k + 1

Why do memory hierarchies work?

m Because of locality, programs tend to access data at level k
more often than they access the data at level k +1

m Thus, the storage at level kK + 1 can be slower, larger, and
cheaper per bit

Big Idea (ldeal): The memory hierarchy creates a large pool of
storage that costs as much as the cheap storage near the
bottom, but serves data to programs at the rate of the fast
storage near the top



General Cache Concepts

Smaller, faster, more expensive
device at level k caches a
subset of the blocks from level k+1.

Larger, slower, cheaper storage
device at level k+1 is partitioned
into blocks.
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General Cache Concepts

m A cache hit is when the data in block b is needed and is in the
cache

m A cache miss is when the data in block b is needed and is in
not the cache

m Types of cache misses:

m Cold (compulsory) miss: occur because the cache starts empty
and this is the first reference to the block

m Capacity miss: occur when the set of active cache blocks
(working set) is larger than the cache

m Conflict miss: occur when the level k cache is large enough, but
multiple data objects all map to the same level k block where a
block is a small subset of the block positions at level kK — 1



Storage Technologies

m Magnetic disks
m Store on magnetic medium
m Electromechanical access
m Nonvolatile (Flash) memory
m Store as persistent charge
m Implemented with 3D structure



Disk Geometry

m Disks consist of platters, each with two surfaces
m Each surface consists of concentric rings called tracks
m Each track consists of sectors separated by gaps
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Disk Capacity

m Capacity: maximum number of bits that can be stored
m Vendors express capacity in units of gigabytes (GB) or terabytes
(TB), where 1 GB = 10° Bytes and 1 TB = 10! Bytes
m Capacity is determined by these technology factors:
m Recording density (bits/in): number of bits that can be
squeezed into a 1 inch segment
m Track density (tracks/in): number of tracks that can be
squeezed into a 1 inch radial segment
m Areal density (bits/in?): product of recording density and track
density



Disk Operation

The disk surface v
. . e
spins at a fixed ~
. e
rotational rate. ,
’

The read/write head

is attached to the end
of the arm and flies over
the disk surface on

a thin cushion of air.
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can position the read/write
head over any track.



Disk Operation

— Read/write heads
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Disk Access Time

Average time to access some target sector approximated by
L] Taccess = lseek + 7-rotation + Ttransfer
Seek time

m Time to position heads over cylinder containing target sector
m Typical Teeex is 3 to 9 ms

Rotational latency
m Time waiting for the first bit of target sector to pass under

read /write head
1 1 60
® T iotation = 5 RPMs ° >

1 min
m Typical rotational rate is 7,200 RPMs

Transfer time

m Time to read the bits in the target sector
s T 60 s
transfer — RPM avg sectors per track ~ 1 min




Disk Access Time Example

m Given
m Rotational rate = 7200 RPM
m Average seek time = 9 ms
m Average number of sectors per track = 400
m Derived:
® Tiotation = 4 ms
B Tianster = 0.02 ms
B T,ccess = 0.02 ms
m Important points:
m Access time is dominated by seek time and rotational latency
m First bit in sector is the most expensive, the rest are free
m SRAM access time is about 4 ns per double word, DRAM about
60 ns

m Disk is about 40,000 times slower than SRAM
m Disk is about 2,500 times slower than DRAM
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Reading a Disk Sector (1)

CPU initiates disk read by writing a command, logical block

number, and destination memory address to a port (address)
associated with the disk controller
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Reading a Disk Sector (2)

m Disk controller reads the sector and performs a direct memory
access (DMA) transfer into main memory
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Reading a Disk Sector (3)

m When the DMA transfer completes, the disk controller notifies
the CPU with an interrupt
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Nonvolatile Memories

m DRAM and SRAM are volatile memories
m Lose information if powered off
m Nonvolatile memories retain value even if powered off
m Read-only memory (ROM): programmed during production
m Electrically erasable PROM (EEPROM): electronic erase
capability
m Flash memory: EEPROMS with partial (block level) erase
capability
m Uses for Nonvolatile Memories
m Firmware programs stored in a ROM
m Solid state disks
m Disk caches



Solid State Disks (SSDs)
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m Pages: 512KB to 4KB, Blocks: 32 to 128 pages

m Data read/written in units of pages

m Page can be written only after its block has been erased
m A block wears out after about 100,000 repeated writes



SSD Tradeoffs versus Rotating Disks

m Advantages
m No moving parts
m Disadvantages
m Have the potential to wear out
m More expensive per byte
m Applications
m Smartphones, laptops
m Increasingly common in desktops and servers



Summary

m The speed gap between CPU, memory and mass storage
continues to widen

m Well-written programs exhibit a property called locality

m Memory hierarchies based on caching close the gap by
exploiting locality

m Flash memory progress outpacing all other memory and storage
technologies



