The Memory Hierarchy

CPSC 235 - Computer Organization

References

m Slides adapted from CMU

http://www.cs.cmu.edu/~213/schedule.html

Outline

The memory abstraction

RAM: main memory

Locality of reference

The memory hierarchy

Storage technologies and trends

Writing and Reading Memory

m Write
m Transfer data from CPU to memory
m Example: movq %rax, 8(Jrsp)
m “Store” operation

m Read
m Transfer data from memory to CPU
m Example: movq 8(%rsp), %rax
m “Load"” operation

Traditional Bus Structure Connecting
CPU and Memory

m A bus is a collection of parallel wires that carry address, data,
and control signals

m Buses are typically shared by multiple devices

CPU chip

Register file

: : ALU
1L . |
. — 110 Main
Bus interface <:_ bridge :> memory

System bus Memory bus

Memory Read Transaction (1)

m Example: movq A, Y%rax

m CPU places address A on the memory bus

Register file

ALU

ﬁ Main memory
I/O bridge A 0

N
Bus interface \17 X A

%rax

Memory Read Transaction (2)

m Example: movq A, Yrax

m Main memory reads A from the memory bus, retrieves word x,
and places it on the bus

Register file

ALU

ﬁ Main memory
I/O bridge X 0

(ll:l\ N
Bus interface — / X A

srax

Memory Read Transaction (3)

m Example: movq A, Y%rax

m CPU read word x from the bus and copies it into register %rax

Register file

. ALU
srax X <::|

Bus interface

1/0 bridge

Main memory

—=

K—>

0

A

Memory Write Transaction (1)

m Example: movq %rax, A

m CPU places address A on the memory bus; main memory reads
it and waits for the corresponding data word to arrive

Register file

Srax y

JC

Bus interface

=

ALU

1/0 bridge

Main memory
0

.|

Memory Write Transaction (2)

m Example: movq %rax, A

m CPU places data word y on the bus

Register file

. : ALU
rax Cj
i E Main memory
I/O bridge 0
N
Bus interface A

Memory Write Transaction (2)

m Example: movq %rax, A

m Main memory reads data word y from the bus and stores it at

address A

Register file

%rax y

a ALU

JC

Bus interface

—

1/0 bridge

Main memory

—

0

A

Random-Access Memory (RAM)

m Key features
m RAM is traditionally packaged as a chip or embedded as part of
processor chip
m Basic storage unit is normally a cell (one bit per cell)
m Multiple RAM chips form a memory
m RAM comes in two varieties
m SRAM (static RAM)
m DRAM (Dynamic RAM)

RAM Technologies

= DRAM

m 1 transistor 4+ 1 capacitor per bit

m Must refresh state periodically
m SRAM

m 6 transistors per bit

m Holds state indefinitely (but will still lose data on power loss)
m Trends

m SRAM scales with semiconductor technology

m DRAM scaling limited by need to minimum capacitance

Enhanced DRAMSs

m Operation of DRAM cell has not changed since its invention
m Commercialized by Intel in 1970

m DRAM cores with better interface logic and faster 1/0:
m Synchronous DRAM (SDRAM)
m Uses a conventional clock signal instead of asynchronous
control
m Double data-rate synchronous DRAM (DDR SDRAM)
m Double edge clocking sends two bits per cycle per pin
m Different types distinguished by size of small prefetch buffer;
DDR (2 bits), DDR2 (4 bits), DDR3 (8 bits), DDR4 (16 bits)

Conventional DRAM Organization

m d x w DRAM
m d - w total bits organized as d supercells of size w bits
DRAM chip
Cols
1 2
2 0

|

NG— Fowe
lemol
v 2 ~————1 | _ Supercell
2,

controller
(toCPU) @1

Internal row buffer

Reading DRAM Supercell (2,1)

m Step 1(a): Row access strobe (RAS) selects row 2
m Step 1(b): Row 2 copied from DRAM array to row buffer

Memory
controller

DRAMchip
i Cols
RAS = E ! l
2 1
——d—h: 0
addr |
: 1
i Rows
: 2
8 3 j_t j_t
e e

Row 2 ‘ | H
L

Internal row buffer

Reading DRAM Supercell (2,1)

m Step 2(a): Column access strobe (CAS) selects column 1

m Step 2(b): Supercell (2,1) copied from buffer to data lines, and
eventually back to the CPU

m Step 3: All data written back to row to provide refresh

DRAMchip .
Cols
CAS =1 ! 1
2 1
] 0
addr
: 1
Memory : Rows
controller | Supercell ! 2
(2,1)
8 3
data E :i §

Internal row buffer

Memory Modules

addr (row = i, col = j)

O: Supercell (i)

DRAM 0]

[m) 64 MB
o g memory module
— o consisting of
DRAM 7 al ¥ eight 8M x 8 DRAMs
=]
g data

Bits [Bits [Bis [Bis [Bis |mits |mits [Bis
56-63 |48-55 |ao-47 3230 2431 |1623 |815 o7

63 56 55 4847 4039 231 2423 1815 87 0

64-bit word at main memory address A

Memory
controller

64-bit word to CPU chip

The CPU-Memory Gap

m The gap widens between DRAM, disk, and CPU speeds

100,000,000.0
10,000,000.0 \‘\H—.\’_’

1,000,000.0
100,000.0 A —+—Disk seek time
10,000.0 —&—SSD access time
1,000.0 ~®-DRAM access time

Time (ns)

100.0 %._._H\- ~e-SRAM access time
10.0 -C-CPU cycle time

-O-Effective CPU cycle time

1.0
0.1

0.0 4 T
1985 1990 1995 2000 2003 2005 2010 2015
Year

Locality

m Principle of Locality: Programs tend to use data and
instructions with addresses near or equal to those they have
used recently

m Temporal locality:

m Recently referenced items are likely to be referenced again in
the near future

m Spatial locality:

m Items with nearby addresses tend to be referenced close
together in time

Locality Example

sum = O;

for (i = 0; i < n; i++) {
sum += ali];

}

return sum

m Data references
m References array elements in succession (spatial)
m Reference variable sum each iteration (temporal)
m Instruction references
m Reference instructions in sequence (spatial)
m Cycle through loop repeatedly (temporal)

Qualitative Estimates of Locality

m Claim: being able to look at code and get a qualitative sense of
its locality is a good skill for a professional programmer

m Question: Does this function have good locality with respect to
array a?

int sum_array_rows(int a[M][N]) {
int i, j, sum = O;
for (i = 0; i < M; i++) {
for (j = 0; j < N; j++) }
sum += al[i] [j];
}
}

return sum;

Locality Example

m Question: can you permute the loops so that the function

scans the 3D array with a stride-1 reference pattern (and thus
have good spatial locality)?

int sum_array_3d(int a[M] [N][N]) {
int i, j, k, sum = 0;

for (i = 0; i < M; i++) {
for (j = 0; j < N; j++) }
for (k = 0; k < M; k++) {
sum += alk][i][j];
}
}
}

return sum;

Memory Hierarchies

m Some fundamental and enduring properties of hardware and
software:

m Fast storage technologies cost more per byte, have less capacity,
and require more power (heat!).

m The gap between CPU and main memory speed is widening

m Well-written programs tend to exhibit good locality

m These fundamental properties complement each other
beautifully

m The suggest an approach for organizing memory and storage
systems known as a memory hierarchy

Example Memory Hierarchy

LO:

Smaller, Regs CPU registers hold words retrieved from
faster, cache memory.

and L1: L1 cache

(Ce"rs‘b"e(;) (SRAM) L1 cache holds cache lines retrieved
p‘ v from the L2 cache.

Soviee Lo L2 cache

levices :
(SRAM)
L2 cache holds cache lines
retrieved from L3 cache
L3: L3 cache
(SRAM)
L3 cache holds cache lines
Larger, retrieved from memory.
slower, . .
and L4: Main memory

cheaper (DRAM) " "

(per byte) Main memory holds disk
storage blocks retrieved from local
devices disks

L5: Local secondary storage
(local disks)
Local disks hold files
retrieved from disks on
remote network servers.
L6: Remote secondary storage

(distributed file systems, Web servers)

Caches

Cache: A smaller, faster storage device that acts as a staging
area for a subset of the data in a larger, slower device

Fundamental idea of a memory hierarchy:

m For each k, the faster, smaller device at level k serves as a
cache for the larger, slower device at level k + 1

Why do memory hierarchies work?

m Because of locality, programs tend to access data at level k
more often than they access the data at level k +1

m Thus, the storage at level kK + 1 can be slower, larger, and
cheaper per bit

Big Idea (ldeal): The memory hierarchy creates a large pool of
storage that costs as much as the cheap storage near the
bottom, but serves data to programs at the rate of the fast
storage near the top

General Cache Concepts

Smaller, faster, more expensive
device at level k caches a
subset of the blocks from level k+1.

Larger, slower, cheaper storage
device at level k+1 is partitioned
into blocks.

Levelke |[4 |[o [14][3 |
Data are copied between
levels in block-sized transfer units.
Lo J[+ J[2][5]
Level k+1: [+ J[s J[e J[7]
Ls J[o J[w0o][n]
[12][13][14][15]

General Cache Concepts

m A cache hit is when the data in block b is needed and is in the
cache

m A cache miss is when the data in block b is needed and is in
not the cache

m Types of cache misses:

m Cold (compulsory) miss: occur because the cache starts empty
and this is the first reference to the block

m Capacity miss: occur when the set of active cache blocks
(working set) is larger than the cache

m Conflict miss: occur when the level k cache is large enough, but
multiple data objects all map to the same level k block where a
block is a small subset of the block positions at level kK — 1

Storage Technologies

m Magnetic disks
m Store on magnetic medium
m Electromechanical access
m Nonvolatile (Flash) memory
m Store as persistent charge
m Implemented with 3D structure

Disk Geometry

m Disks consist of platters, each with two surfaces
m Each surface consists of concentric rings called tracks
m Each track consists of sectors separated by gaps

0’ Track k Gaps

X/

[\
Q))

N /

— —

|1

Sectors

Disk Capacity

m Capacity: maximum number of bits that can be stored
m Vendors express capacity in units of gigabytes (GB) or terabytes
(TB), where 1 GB = 10° Bytes and 1 TB = 10! Bytes
m Capacity is determined by these technology factors:
m Recording density (bits/in): number of bits that can be
squeezed into a 1 inch segment
m Track density (tracks/in): number of tracks that can be
squeezed into a 1 inch radial segment
m Areal density (bits/in?): product of recording density and track
density

Disk Operation

The disk surface v
. . e
spins at a fixed ~
. e
rotational rate. ,
’

The read/write head

is attached to the end
of the arm and flies over
the disk surface on

a thin cushion of air.

/

By moving radially, the arm
can position the read/write
head over any track.

Disk Operation

— Read/write heads

Arm

i

— =

Spindle

Disk Access Time

Average time to access some target sector approximated by
L] Taccess = lseek + 7-rotation + Ttransfer
Seek time

m Time to position heads over cylinder containing target sector
m Typical Teeex is 3 to 9 ms

Rotational latency
m Time waiting for the first bit of target sector to pass under

read /write head
1 1 60
® T iotation = 5 RPMs ° >

1 min
m Typical rotational rate is 7,200 RPMs

Transfer time

m Time to read the bits in the target sector
s T 60 s
transfer — RPM avg sectors per track ~ 1 min

Disk Access Time Example

m Given
m Rotational rate = 7200 RPM
m Average seek time = 9 ms
m Average number of sectors per track = 400
m Derived:
® Tiotation = 4 ms
B Tianster = 0.02 ms
B T,ccess = 0.02 ms
m Important points:
m Access time is dominated by seek time and rotational latency
m First bit in sector is the most expensive, the rest are free
m SRAM access time is about 4 ns per double word, DRAM about
60 ns

m Disk is about 40,000 times slower than SRAM
m Disk is about 2,500 times slower than DRAM

CPU

Register file

—

ALU

1/O Bus

System bus

C— U,
ridge memory

Memory bus

S0

usB Graphics
controller adapter
Mouse Solid Key Monitor
state board
disk

1/0 bus

Host bus
adapter
(SCSI/SATA)

Expansion slots for
other devices such
as network adapters

Disk drive

Reading a Disk Sector (1)

CPU initiates disk read by writing a command, logical block

number, and destination memory address to a port (address)
associated with the disk controller

CPU_chip
Register file

-

1T
ﬁ F 1/0 bus
< >
Ll 2

UsB Graphics Disk
controller adapter controller

Mouse Keyboard Monitor —)

Disk

Reading a Disk Sector (2)

m Disk controller reads the sector and performs a direct memory
access (DMA) transfer into main memory

Register file
ALU

i
o K= | £ K== s,
< 1/0 bus >
41

Dij

gk
contpller
Mouse Keyboard Monitor

CPU chip

usB
controller

Graphics
adapter

Reading a Disk Sector (3)

m When the DMA transfer completes, the disk controller notifies
the CPU with an interrupt

Register file
ALU
P Interrupt
ir)
Mai
[ommee KD | K

-
D R

CPU chip

usB Graphics Disk
controller adapter controller
Mouse Keyboard Monitor -

Disk

Nonvolatile Memories

m DRAM and SRAM are volatile memories
m Lose information if powered off
m Nonvolatile memories retain value even if powered off
m Read-only memory (ROM): programmed during production
m Electrically erasable PROM (EEPROM): electronic erase
capability
m Flash memory: EEPROMS with partial (block level) erase
capability
m Uses for Nonvolatile Memories
m Firmware programs stored in a ROM
m Solid state disks
m Disk caches

Solid State Disks (SSDs)

1/0 bus
Requests to read and
. . write logical disk blocks
Solid State Disk (SSD)____
Flash
; translation layer
i Flash memory

! | Block 0 Block B-1 :
% “ Page 0 | Page 1 ‘ ---|PageP—1” || Page 0 | Page 1 ‘ ---‘PageP—1||

m Pages: 512KB to 4KB, Blocks: 32 to 128 pages

m Data read/written in units of pages

m Page can be written only after its block has been erased
m A block wears out after about 100,000 repeated writes

SSD Tradeoffs versus Rotating Disks

m Advantages
m No moving parts
m Disadvantages
m Have the potential to wear out
m More expensive per byte
m Applications
m Smartphones, laptops
m Increasingly common in desktops and servers

Summary

m The speed gap between CPU, memory and mass storage
continues to widen

m Well-written programs exhibit a property called locality

m Memory hierarchies based on caching close the gap by
exploiting locality

m Flash memory progress outpacing all other memory and storage
technologies

