Sequential Implementation

CPSC 235 - Computer Organization

References

m Slides adapted from CMU

http://www.cs.cmu.edu/afs/cs/academic/class/15349-s02/3e/www/

Y86-64 Instruction Set

Byte 2 3 1 5 6 7 8 9
halt

nop

rrmovq 1A, B

irmova V, 18 [z o= l8] v |
rmmovg 1A, D(B) [« oJrAlm8] D]
memovg DBy, A [oJra[B] D]
oPg 1A, 1B

%X Dest Dest]
cmovxX rA, B

call Dest Dest |

ret

pushq 1A

popg 1A

Building Blocks

m Combinational Logic
m Compute Boolean functions of inputs
m Continuously respond to input changes
m Operate on data and implement control
m Storage Elements
m Store bits
Addressable memories
Non-addressable registers
Loaded only as clock rises

Sequential Hardware Structure

m State
m Program counter register (PC)
m Condition code register (CC)
m Register file
m Memories
m Instruction flow
m Read instruction at address specified by PC
m Process through stages
m Update program counter

Sequential Stages

Fetch: read instruction from memory
Decode: read program registers
Execute: compute value or address
Memory: read or write data

Write back: write program registers
PC: update program counter

Sequential Hardware Structure

Instruction Decoding

m Instruction format (10 bytes max)
m Instruction byte: icode:ifun
m Optional register byte: rA:rB
m Optional constant word: valC

Executing Arithmetic/Logical Operation

Fetch: read 2 bytes

Decode: read operand registers

Execute: perform operation and set condition codes
Memory: do nothing

Write back: update register

PC update: increment PC by 2

Stage Computation: Arithmetic/Logical

Operations
Stage Op rA rB Action
Fetch icode:ifun = M1[PC] read instruction byte
rA:rB = M1[PC+1] read register byte
valP = PC+2 compute next PC
Decode valA = R[rA] read operand A
valB = R[rB] read operand B
Execute valE = valB OP valA Perform ALU operation
Memory
Write back R[rB] = valE Write back result

PC update PC = valP update PC

Executing rmmovq

Fetch: read 10 bytes

Decode: read operand registers
Execute: compute effective address
Memory: write to memory

Write back: do nothing

PC update: increment PC by 10

Stage Computation: rmmovq

Stage

rmmovq rA, D(rB)

Action

Fetch

Decode

Execute
Memory
Write back
PC update

icode:ifun
rA:rB = M1[PC+1]

valP

valB + valC
M8 [valE]

read instruction byte

read register byte

read 8 byte displacement
compute next PC

read operand A

read operand B

compute effective address (ALU)
write 8 byte value to memory

update PC

Executing popq

Fetch: read 2 bytes

Decode: read stack pointer

Execute: increment stack pointer by 8

Memory: read from old stack pointer

Write back: update stack pointer and write result to register
PC update: increment PC by 2

Stage Computation: popq

Stage popq rA Action
Fetch icode:ifun = M1[PC] read instruction byte
rA:rB = M1[PC+1] read register byte
valP = PC+2 compute next PC
Decode valA = R[Yrsp] read stack pointer
valB = R[Yrsp] read stack pointer
Execute valE = valB + 8 increment stack pointer (ALU)
Memory valM = M8[valA] read 8 bytes from stack
Write back R[Yrsp] = valE update stack pointer
R[rA] = valM write back result
PC update PC = valP update PC

Executing Conditional Moves

Fetch: read 2 bytes

Decode: read operand registers

Execute: if not condition, then set destination register to OxF
Memory: do nothing

Write back: update register (or not)

PC update: increment PC by 2

Stage Computation: Conditional Move

Stage cmovXX rA, rB Action
Fetch icode:ifun = M1[PC] read instruction byte
rA:rB = M1[PC+1] read register byte
valP = PC+2 compute next PC
Decode valA = R[rAl read operand A
valB = 0 read stack pointer
Execute valE = valB + valA pass val through ALU (v
if !Cond(CC,ifun) rB = OxF (disable register update)
Memory
Write back R[rB] = valE write back result

PC update PC = valP update PC

Executing Jumps

Fetch: read 9 bytes and increment PC by 9

Decode: do nothing

Execute: determine whether to take branch based on jump
condition codes

Memory: do nothing

m Write back: do nothing

PC update: set PC to destination if branch taken or to
incremented PC if not branch

Stage Computation: Jumps

Stage jXX Dest Action

Fetch icode:ifun = M1[PC] read instruction byte
valC = M8[PC+1] read 8 byte destination addre
valP = PC+9 fall through address

Decode

Execute Cnd = Cond(CC, ifun) take branch?

Memory

Write back

PC update PC = Cnd ? valC : valP update PC

Executing call

Fetch: read 9 bytes and increment PC by 9

Decode: read stack pointer

Execute: decrement stack pointer by 8

Memory: write incremented PC to new value of stack pointer
Write back: update stack pointer

PC update: set PC to Dest

Stage Computation: call

Stage

call Dest

Action

Fetch

Decode
Execute
Memory
Write back
PC update

icode:ifun

valB + -8
M8 [valE]
R[%rsp]
valC

read instruction byte

read 8 byte destination address

compute return point

read stack pointer

decrement stack pointer (ALU)

rite 8 byte return value on stack
update stack pointer

set PC to destination

Executing ret

Fetch: read 1 byte

Decode: read stack pointer

Execute: increment stack pointer by 8

Memory: read return address from old stack pointer
Write back: update stack pointer

PC update: set PC to return address

Stage Computation: ret

Stage ret Action

Fetch icode:ifun = M1[PC] read instruction byte

Decode valA = R[Yrsp] read operand stack pointer
valB = R[%rsp] read operand stack pointer

Execute valE = valB + 8 increment stack pointer (ALU)

Memory valM = M8[valA] read return address

Write back R[Yrsp] = valE update stack pointer

PC update PC = valM set PC to return address

Computation Steps

Stage Steps Action
Fetch icode:ifun read instruction byte
rA, rB [read register byte]
valC [read constant word)]
valP compute next PC
Decode valA, srcA [read operand A]
valB, srcB [read operand B]
Execute valE perform ALU operation
Cond code [set/use condition code]
Memory valM [memory read/write]
Write back dstE [write back ALU result]
dstM [write back memory result]
PC update PC update PC

Computed Values

m Fetch
m icode: instruction code
m ifun: instruction function
rA: instruction register A
rB: instruction register B
valC: instruction constant
valP: incremented PC

m Decode

srcA:
srcB:
dstE:
dstM:
valA:
valB:

Computed Values

register ID A

register ID B
destination register E
destination register M
register value A
register value B

Computed Values

m Execute
m valE: ALU result
m Cnd: branch/move flag
m Memory
m valM: value from memory

Sequential Hardware

Sequential Hardware

m Diagram key
m Blue boxes: pre-designed hardware blocks
Gray boxes: control logic
White ovals: labels for signals
Thick lines: 64-bit word values
Thin lines: 4-8 bit values
Dotted lines: 1-bit values

Fetch Logic

icode ifun rA B valC valP

l

PC
increment

Split Align

Byte 0 Bytes 1-9

Instruction
memory

imem_error

]

Fetch Logic

m Predefined Blocks
m PC: Register containing PC
m Instruction memory: read 10 bytes (PC to PC+9)
m signal invalid addresses
m Split: divide instruction byte into icode and ifun
m Align: get fields for rA, rB, and valC
m Control Logic
m Instruction valid: is the instruction valid?
m icode, ifun: generate no-op if invalid address
m Need regids: does the instruction have a register byte?
m Need valC: does this instruction have a constant word?

Decode Logic

Cnd valA valB valM valE

A . B _, \
Register
file E

dstE dstM srcA srcB

icode rA B

Decode Logic

m Register File
m Read ports A, B
m Write ports E, M
m Addresses are register IDs or 15 (0xF) (no access)
m Control Logic
m srch, srcB: read port addresses
m dstE, dstM: write port addresses
m Signals
m Cnd: indicate whether or not to perform conditional move
(computed in execute stage)

Execute Logic

Cnd valE
cond —| |
cC } ALU

icode ifun valC valA valB

Execute Logic

m Units
m ALU: implements 4 required functions and generates condition
code values
m CC: register with 3 condition codes
m cond: computes conditional jump/move flag
m Control Logic
m Set CC: should condition code register be loaded?
m ALU A: input A to ALU
m ALU B: input B to ALU
m ALU fun: what function should ALU compute?

Memory Logic

valM

dmem_error

instr_valid i ¢
imem_error

I data out

Data
memory

icode

data in

valE valA valP

Memory Logic

m Memory
m Reads or writes memory word
m Control Logic
m stat: what is instruction status?
m Mem. read: should word be read?
m Mem. write: should word be written?
m Mem. addr.: select address
m Mem. data: select data

PC Update Logic

icode Cnd valC valM valP

m New PC

m Select next value of PC

Sequential Summary

m Implementation
m Express every instruction as series of simple steps
m Follow same general flow for each instruction type
m Assemble registers, memories, pre-designed combinational
blocks
m Connect with control logic
m Limitations
m Too slow to be practical
m In one cycle must propagate through instruction memory,
register file, ALU, and data memory
m Would need to run the clock very slowly
m Hardware units only active for fraction of clock cycle

