Pipelined Implementation

CPSC 235 - Computer Organization

References

m Slides adapted from CMU

http://www.cs.cmu.edu/afs/cs/academic/class/15349-s02/3e/www/

Outline

m General Principles of Pipelining
m Goal
m Difficulties
m Creating a Pipelined Y86-64 Processor
m Rearranging the sequential implementation
m Inserting pipeline registers
m Problems with data and control hazards

Computational Example

300 ps 20 ps
— Combinational Delay = 320 ps
logic Throughput = 3.12 GIPS
(a) Hardware: Unpipelined Clock
Il
12 \ |
3 Time \—1

(b) Pipeline diagram

m System
m Computation requires total of 300 picoseconds (ps)
m Additional 20 ps to save result in register
m Must have clock cycle of at least 320 ps

3-Way Pipelined Version

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps
Comb. Comb. Comb. Delay = 360 ps
—>| logic [logic | logic | Y P
A B ¢ Throughput = 8.33 GIPS

(a) Hardware: Three-stage pipeline Clock
nlAa]B]JC
12 AlB [c]
13 AlBlc]
Time

(b) Pipeline diagram

m System
m Divide combinational logic into 3 blocks of 100 ps each
m Can begin new operation as soon as previous one passes
through stage A
m begin new operation every 120 ps
m Overall latency increases
m 360 ps from start to finish

Limitations: Nonuniform Delays

50ps 20 ps 150 ps 20 ps 100 ps 20 ps
omb. Comb. Comb. _
logic logic | logic == Delay = 510_ps
A B c Throughput = 5.88 GIPS
|
Clock

(a) Hardware: Three-stage pipeline, nonuniform stage delays

11 |A‘ B C ‘

12 Al B c |

13 Al B [C]
Time

(b) Pipeline diagram

m Throughput limited by slowest stage
m Other stages sit idle for much of the time
m Challenging to partition system into balanced stages

Limitations: Register Overhead

50ps 20ps 50ps 20ps 50ps 20ps 50ps 20ps 50ps 20ps 50ps 20 ps

(Comb| {Comb. IComb,| IComb,, IComb. IComb.|
logic logic logic logic logic logic
I

Clock

Delay = 420 ps, Throughput = 14.29 GIPS

m As the pipeline deepens, overhead of loading registers becomes
more significant

m High speeds of modern processors designs are obtained through
very deep pipelining

Data Dependencies

L

— Combinational —
logic
Clock
(a) Hardware: Unpipelined with feedback
11 5
12 < [y
3]
Time

(b) Pipeline diagram

m Each operation depends on result from preceding one

Data Hazards

L,

Comb. Comb. Comb.
—>| logic [logic [logic [
A B C

(c) Hardware: Three-stage pipeline with feedback Clock

n[alB[c kKN

12 A8 /e

13 A/lB [c]

14 AlB[c]
Time

(d) Pipeline diagram

m Result does not feed back around in time for next operation
m Pipelining has changed system behavior

Data Dependencies in Processors

irmovq $50, Y%rax
addq %rax, %rbx
mrmovq 100(%rbx), %rdx

m Result from one instruction used as operand for another
m Read-after-write (RAW) dependency

m Common in actual programs

m Must make sure our pipeline handles these properly
m get correct results
m minimize performance impact

Sequential Hardware

Modified Sequential Hardware

Modified Sequential Hardware

m Reorder PC stage to be at the beginning
m PC stage
m Task is to select PC for current instruction
m Based on results computed by previous instruction
m Processor state
m PC is no longer stored in register
m PC can be determined based on other stored information

Pipeline Stages

Fetch

m Select current PC

m Read instruction

m Compute incremented PC
Decode

m Read program registers
Execute

m Operate ALU
Memory

m Read or write data memory
Write Back

m Update register file

Pipelined Hardware

Pipelined Hardware

m Pipeline registers hold intermediate values from instruction

execution

m Forward Paths
m Values passed from one stage to the next
m Cannot jump past stages

m For example, valC passes through decode

m Signal naming conventions
m S_Field: value of field held in stage S pipeline register
m s_Field: value of field computed in stage S

Feedback Paths

Predicted PC

m Guess value of next PC
Branch information

m Jump taken/not taken

m Fall-through or target address
Return point

m Read from memory
Register updates

m To register file write ports

Predicting the PC

m Start fetch of new instruction after current one has completed
fetch stage
m Not enough time to reliably determine next instruction
m Guess which instruction will follow
m Recover if prediction was incorrect

Pipeline Demonstration

1 2 3 4 5 6 7 8 9
irmovg $1,%rax #11 | F [D]E [M[W
irmovq $2,%rbx #12 [F[p|E[M][wW
irmovg $3,%rcx #I3 F|D|E|M|W
irmovq §4,%rdx #14 FID[E[M][w]
halt #15 F[D[E[mM][wW]
Cycle 5

Il

I2

13

I4

15

TERE

Data Dependencies: 3 nop Instructions

1 2 3 4 5 6 7 8 9 10 1

progl
0x000: irmovg $10, $rdx ‘ F ‘ D|E|M|W
0x00a: irmovq §3,srax [F[p[E[M[wW
0x014: nop F|D|E|[M|W
0x015: nop FIDIE[M|W
0x016: nop F|ID|E | M|W
0x017: addg %rdx,$rax F|D|E|M W‘
0x019: halt FID|E[M[wW]
Cycle 6
w
R[srax] « 3
Cycle 7
D
valA « R[%rdx] = 10
valB « R 3

Data Dependencies: 2 nop Instructions

12 3 4 5 6 7 8 9 10
prog2
0x000: irmovq $10,3:dx | F |[D |E [M | W
0x00a: irmovg $3,%rax ‘F DIE|M|W
0x014: nop F|[D|E|M|W
0x015: nop F|DIE|M|W
0x016: addq $rdx, 5rax FID|E[M[wW]
0x018: halt FIp[E[M[wW]
Cycle 6
w
R[#rax] « 3
D
valA « R[srdx] =10 Error
valB « R[3rax] =0

Data Dependencies: 1 nop Instruction

prog3 1 2 3 4 5 6 7 8 9
0x000: irmovg $10,5zdx | F | D | E [M [W
0%00a: irmovg $3,%rax [F]p[E[M][wW
0x014: nop F|D|E|M|W
0x015: addqg %rdx, $rax FID|E|M W‘
0%017: halt FID[E[M]wW]
Cycle 5
w
R[ardx] « 10
M
M_valE = 3
M_dstE = ¢rax
D
Error
valA « R[3rdx] =0
valB « R[trax] =0

Data Dependencies: No nop Instruction

prog4

0x000: irmovg $10,$rdx
0x00a: irmovg $3,%rax
0x014: addg %rdx,%rax
0x016: halt

1 2 3 4 5 6 7 8
[FID[E[M]wW
[Flp[E[M][wW
FID[E[M[w]
FID[E[M[w]
Cycle 4
M
M_valE =10

M_dstE = $rdx

E

e vaE«<0+3=3
E_dstE = srax

D

valB « R[srax] =0

valA < Rlsrax] =0 L]

Error

Stalling for Data Dependencies

prog2 1 2 3 4 5 6 7 8 9 10 1
0x000: irmovg $10, $rdx ‘ E ‘ D|E|M|W
0x00a: irmovg $3,%rax ‘ F|ID|E|M|W
0x014: nop FIDIE[M|W
0x015: nop FID|IE|[M|W
bubble rE|[M|W
0x016: addg %rdx,$rax ‘ F ‘ D|ID|E|M W‘
0x018: halt [FIFlplE[M]w]

m If instruction follows too closely after one that writes to
register, then slow it down

m Hold instruction in decode

m Dynamically inject nop into execute stage

Stall Condition

m Source Registers

m srcA and srcB of current instruction in decode stage
m Destination Registers

m dstE and dstM fields

m Instructions in execute memory, and write back stages
m Special case

m Do not stall for register ID 15 (0xF)

m Indicates absence of register operand
m Or failed conditional move

Stall Example

prog4
0x000: irmovg $10, %rdx ‘ [‘ D | E ‘ M | W
0x00a: irmovg $3,%rax ‘ F | D ‘ E|M|W
bubble E|[M|W
bubble I' E|M|W
bubble r rME|M|wW
0x014: addg $rdx,$rax | F ‘ D ‘ D \ D|D|E|M W‘
0x016: halt [FIF]F]FIDpJE[M][W]

What Happens When Stalling

m Stalling instruction held back in decode stage
m Following instruction stays in fetch stage

m Bubbles injected into execute stage
m Like dynamically generated nops
m Move through later stages

Implementing Stalling

| M bubble,
T
|« &
:
- —
| Ebubble,
- I BN
o8 T 1

§oon I
o ot
ﬂ st fun - "

R F predPC

icode B valC

m Pipeline Control
m Combinational logic detects stall condition
m Sets mode signals for how pipeline registers should update

Data Forwarding

m Basic Pipeline
m Register is not written until completion of write back stage
m Source operands read from register file in decode stage
m Needs to be in register file at start of stage
m Observation
m Value generated in execute or memory stage
m Trick
m Pass value directly from generating instruction to decode stage
m Needs to available at end of decode stage

Data Forwarding Example

prog2

-[o|m
n|o|m|z| -

rdx | valA « R{srdx] = 10
ax | valB « W_valE =3

m irmovq in write back stage
m Destination value in W pipeline register
m Forward as valB for decode stage

Data Forwarding Example

progs

T2
[F]o
[F

njom| e

mjom(Z| -

ojm|Z|g| «
=

mZ
=

mw]

Cycle 4
M
M_dStE = $rdx
M_valE = 10
E
E_dstE = trax
evaE«0+3=3
o |

valA « M_valE = 10
valB « e_valE =3

STCA = $rdx
sroB = #rax

m Register Jrdx
m Generated by ALU during previous cycle
m Forwarded from memory as valA
m Register Jrax
m Generated by ALU
m Forwarded from execute as valB

Forwarding Priority

m Multiple forwarding choices
m Which one should have priority
m Match serial semantics
m Use matching value from earliest pipeline stage

Implementing Forwarding

m Add additional feedback paths from E, M, and W pipeline
registers into decode stage

m Create logic blocks to select from multiple sources for valA
and valB in decode stage

Implementing Forwarding

Limitation of Forwarding

4 s

MW

E|[M|W

D[E[M[W

F|D|E|[M|W
FID|E[M[W]
FID[E[mM[w]
F|D|E|mM[w]

M_dstM = trax
m_valM « M[128] =3
——

_Ermor
ValA « M_valE =10,_{—

o,]
ValB « Rlizax] =0

m Load-use dependency
m Value needed by end of decode cycle 7
m Value read from memory in memory stage of cycle 8

Avoiding Load/Use Hazard

4 progs

|o|m|z] -

BECEER

_|
n|o|m|z|=
o|m|z|=s

Cycle 8

W_dSIE = i1
W_val = 10

M
M_dstht =
m_valM « M[128] = 3

m Stall using instruction for one cycle
m Can then pick up loaded value by forwarding from memory
stage

Load/Use Hazard Implementation

m Detecting load/use hazard
m If E_icode is imrmovq or popq and E_dst_M is d_srcA or
d_srcB
m Control for load/use hazard
m Stall instructions in fetch and decode stages
m Inject bubble into execute stage

Branch Misprediction Example

0x000: xorq ‘hrax, %rax

0x002: jne t # not taken

0x00b: irmovq $1, Yrax # fall through
0x015: nop

0x016: nop

0x017: nop

0x018: halt

0x019: t: irmovq $3, %rdx # target

0x023: irmovq $4, %rcx # should not execute
0x02d: irmovq $5, %rdx # should not execute

m Should only execute first 8 instructions

Handling Branch Misprediction

m Predict branch as taken
m Fetch 2 instructions at target
m Cancel when mispredicted
m Detect branch not-taken in execute stage
m On following cycle, replace instructions in execute and decode
bubbles
m No side effects have occurred yet

Branch Misprediction Implementation

m Detecting branch misprediction
m If E_icode is jXX and not e_Cnd
m Control for branch misprediction
m Inject bubble into decode and execute stages

Return Example

0x000: irmovq Stack, %rsp # intialize stack pointer
0x00a: call p # procedure call

0x013: irmovq $5, Yrsi # return point

0x01d: halt

0x020: .pos 0x20

0x020: p: irmovq $-1, %rdi # procedure

0x02a: ret

0x02b: irmovq $1, %rax # should not be executed
0x035: irmovq $2, %rax # should not be executed
0x03f: irmovq $3, Jrax # should not be executed
0x049: irmovq $4, Yrax # should not be executed

0x100: .pos 0x100
0x100: Stack: # Stack pointer

Correct Return Example

progé

n|o|m|z| -

n|o|m|z|s| «

n|o|m|z|s

nlofm(z|s

o|m|z(s

W]
M| w]
E[M[w

m As ret passes through pipeline, stall at fetch stage
m While in decode, execute, and memory stage

m Inject bubble into decode stage
m Release stall write back stage is reached

Return Implementation

m Detecting branch misprediction

m If D_icode or E_icode or M_icode is ret
m Control for branch misprediction

m Stall fetch stage

m Inject bubble into decode stage

Special Control Cases

m Detection
Condition Trigger
Processing ret IRET in {C_icode, E_icode, M_icode}
Load/use hazard E icode in {IMRMOVQ, IPOPQ} && E _dstM in

Mispredicted branch E_icode = IJXX & '!'e_Cnd

m Action (on next cycle)

Condition Fetch Decode Execute Memory Write bac
Processing ret stall bubble normal normal normal
Load/use hazard stall stall bubble normal normal

Mispredicted branch normal bubble bubble normal normal

Control Combinations

Load/use Mispredict

ret 1 ret 2 ret 3
M M M M M ret
E| Load E| JxXX E E| ret E | bubble
D| Use D D| ret D | bubble | D| bubble
Combination A

Combination B

m Special cases that can arise on same clock cycle
m Combination A

m Not-taken branch
m ret instruction
m Combination B

m Instruction that reads from memory to rsp
m Followed by ret instruction

Handling Control Combinations

m Combination A
m Should handle as mispredicted branch
m Stall fetch pipeline register
m PC selection logic will be using M_valM
m Combination B
Would attempt to bubble and stall pipeline register D
Signaled by processor as pipeline error
Load/use hazard should get priority
ret instruction should be held in decode stage for additional
cycle

Pipeline Summary

m Data Hazards
m Most handled by forwarding
m Load/use hazard requires one cycle stall
m Control Hazards
m Cancel instructions when mispredicted branch is detected
m Two clock cycles wasted
m Stall fetch stage while ret passes through pipeline
m Three clock cycles wasted
m Control combinations
m Must analyze carefully
m First version had subtle bug

