
Pipelined Implementation
CPSC 235 - Computer Organization

References

Slides adapted from CMU

http://www.cs.cmu.edu/afs/cs/academic/class/15349-s02/3e/www/

Outline

General Principles of Pipelining
Goal
Difficulties

Creating a Pipelined Y86-64 Processor
Rearranging the sequential implementation
Inserting pipeline registers
Problems with data and control hazards

Computational Example

System
Computation requires total of 300 picoseconds (ps)
Additional 20 ps to save result in register
Must have clock cycle of at least 320 ps

3-Way Pipelined Version

System
Divide combinational logic into 3 blocks of 100 ps each
Can begin new operation as soon as previous one passes
through stage A

begin new operation every 120 ps
Overall latency increases

360 ps from start to finish

Limitations: Nonuniform Delays

Throughput limited by slowest stage
Other stages sit idle for much of the time
Challenging to partition system into balanced stages

Limitations: Register Overhead

As the pipeline deepens, overhead of loading registers becomes
more significant
High speeds of modern processors designs are obtained through
very deep pipelining

Data Dependencies

Each operation depends on result from preceding one

Data Hazards

Result does not feed back around in time for next operation
Pipelining has changed system behavior

Data Dependencies in Processors

irmovq $50, %rax
addq %rax, %rbx
mrmovq 100(%rbx), %rdx

Result from one instruction used as operand for another
Read-after-write (RAW) dependency

Common in actual programs
Must make sure our pipeline handles these properly

get correct results
minimize performance impact

Sequential Hardware

Modified Sequential Hardware

Modified Sequential Hardware

Reorder PC stage to be at the beginning
PC stage

Task is to select PC for current instruction
Based on results computed by previous instruction

Processor state
PC is no longer stored in register
PC can be determined based on other stored information

Pipeline Stages

Fetch
Select current PC
Read instruction
Compute incremented PC

Decode
Read program registers

Execute
Operate ALU

Memory
Read or write data memory

Write Back
Update register file

Pipelined Hardware

Pipelined Hardware

Pipeline registers hold intermediate values from instruction
execution
Forward Paths

Values passed from one stage to the next
Cannot jump past stages

For example, valC passes through decode
Signal naming conventions

S_Field: value of field held in stage S pipeline register
s_Field: value of field computed in stage S

Feedback Paths

Predicted PC
Guess value of next PC

Branch information
Jump taken/not taken
Fall-through or target address

Return point
Read from memory

Register updates
To register file write ports

Predicting the PC

Start fetch of new instruction after current one has completed
fetch stage

Not enough time to reliably determine next instruction
Guess which instruction will follow

Recover if prediction was incorrect

Pipeline Demonstration

Data Dependencies: 3 nop Instructions

Data Dependencies: 2 nop Instructions

Data Dependencies: 1 nop Instruction

Data Dependencies: No nop Instruction

Stalling for Data Dependencies

If instruction follows too closely after one that writes to
register, then slow it down
Hold instruction in decode
Dynamically inject nop into execute stage

Stall Condition

Source Registers
srcA and srcB of current instruction in decode stage

Destination Registers
dstE and dstM fields
Instructions in execute memory, and write back stages

Special case
Do not stall for register ID 15 (0xF)

Indicates absence of register operand
Or failed conditional move

Stall Example

What Happens When Stalling

Stalling instruction held back in decode stage
Following instruction stays in fetch stage
Bubbles injected into execute stage

Like dynamically generated nops
Move through later stages

Implementing Stalling

Pipeline Control
Combinational logic detects stall condition
Sets mode signals for how pipeline registers should update

Data Forwarding

Basic Pipeline
Register is not written until completion of write back stage
Source operands read from register file in decode stage

Needs to be in register file at start of stage
Observation

Value generated in execute or memory stage
Trick

Pass value directly from generating instruction to decode stage
Needs to available at end of decode stage

Data Forwarding Example

irmovq in write back stage
Destination value in W pipeline register
Forward as valB for decode stage

Data Forwarding Example

Register %rdx
Generated by ALU during previous cycle
Forwarded from memory as valA

Register %rax
Generated by ALU
Forwarded from execute as valB

Forwarding Priority

Multiple forwarding choices
Which one should have priority
Match serial semantics
Use matching value from earliest pipeline stage

Implementing Forwarding

Add additional feedback paths from E, M, and W pipeline
registers into decode stage

Create logic blocks to select from multiple sources for valA
and valB in decode stage

Implementing Forwarding

Limitation of Forwarding

Load-use dependency
Value needed by end of decode cycle 7
Value read from memory in memory stage of cycle 8

Avoiding Load/Use Hazard

Stall using instruction for one cycle
Can then pick up loaded value by forwarding from memory
stage

Load/Use Hazard Implementation

Detecting load/use hazard
If E_icode is imrmovq or popq and E_dst_M is d_srcA or
d_srcB

Control for load/use hazard
Stall instructions in fetch and decode stages
Inject bubble into execute stage

Branch Misprediction Example

0x000: xorq %rax, %rax
0x002: jne t # not taken
0x00b: irmovq $1, %rax # fall through
0x015: nop
0x016: nop
0x017: nop
0x018: halt
0x019: t: irmovq $3, %rdx # target
0x023: irmovq $4, %rcx # should not execute
0x02d: irmovq $5, %rdx # should not execute

Should only execute first 8 instructions

Handling Branch Misprediction

Predict branch as taken
Fetch 2 instructions at target

Cancel when mispredicted
Detect branch not-taken in execute stage
On following cycle, replace instructions in execute and decode
bubbles
No side effects have occurred yet

Branch Misprediction Implementation

Detecting branch misprediction
If E_icode is jXX and not e_Cnd

Control for branch misprediction
Inject bubble into decode and execute stages

Return Example

0x000: irmovq Stack, %rsp # intialize stack pointer
0x00a: call p # procedure call
0x013: irmovq $5, %rsi # return point
0x01d: halt
0x020: .pos 0x20
0x020: p: irmovq $-1, %rdi # procedure
0x02a: ret
0x02b: irmovq $1, %rax # should not be executed
0x035: irmovq $2, %rax # should not be executed
0x03f: irmovq $3, %rax # should not be executed
0x049: irmovq $4, %rax # should not be executed
0x100: .pos 0x100
0x100: Stack: # Stack pointer

Correct Return Example

As ret passes through pipeline, stall at fetch stage
While in decode, execute, and memory stage

Inject bubble into decode stage
Release stall write back stage is reached

Return Implementation

Detecting branch misprediction
If D_icode or E_icode or M_icode is ret

Control for branch misprediction
Stall fetch stage
Inject bubble into decode stage

Special Control Cases
Detection

Condition Trigger

Processing ret IRET in {C_icode, E_icode, M_icode}
Load/use hazard E_icode in {IMRMOVQ, IPOPQ} && E_dstM in {d_srcA, d_srcB}
Mispredicted branch E_icode = IJXX & !e_Cnd

Action (on next cycle)

Condition Fetch Decode Execute Memory Write back

Processing ret stall bubble normal normal normal
Load/use hazard stall stall bubble normal normal
Mispredicted branch normal bubble bubble normal normal

Control Combinations

Special cases that can arise on same clock cycle
Combination A

Not-taken branch
ret instruction

Combination B
Instruction that reads from memory to rsp
Followed by ret instruction

Handling Control Combinations

Combination A
Should handle as mispredicted branch
Stall fetch pipeline register
PC selection logic will be using M_valM

Combination B
Would attempt to bubble and stall pipeline register D
Signaled by processor as pipeline error
Load/use hazard should get priority
ret instruction should be held in decode stage for additional
cycle

Pipeline Summary

Data Hazards
Most handled by forwarding
Load/use hazard requires one cycle stall

Control Hazards
Cancel instructions when mispredicted branch is detected

Two clock cycles wasted
Stall fetch stage while ret passes through pipeline

Three clock cycles wasted
Control combinations

Must analyze carefully
First version had subtle bug

