Machine Programming
Procedures

CPSC 235 - Computer Organization

References

m Slides adapted from CMU

http://www.cs.cmu.edu/~213/schedule.html

Outline

m Procedures
m Mechanisms
m Stack Structure
m Calling Conventions
m Passing Control
m Passing Data
m Managing local data
m lllustration of Recursion

Mechanisms in Procedures

m Passing control
m To beginning of procedure code
m Back to return point
m Passing data
m Procedure arguments
m Return values
m Memory management
m Allocate during procedure execution
m Deallocate upon return

Mechanisms in Procedures (continued)

m Mechanisms all implemented with machine instructions, but
the choices are determined by designers. These choices make
up the Application Binary Interface (ABI).

m x86-64 implementation of a procedure uses only those

mechanisms required

x86-64 Stack

m Region of memory managed with stack discipline
m Memory viewed as array of bytes
m Different regions have different purposes
m (Like ABI, a policy decision)
m Grows toward lower addresses
m The %rsp register contains the lowest stack address (“top"” of

stack)

x86-64 Stack: Push

m Syntax: pushq Src

m Semantics:

m Fetch operand at Src
m Decrement %rsp by 8
m Write operand at address given by %rsp

x86-64 Stack: Pop

m Syntax: popq Dest
m Semantics:

Read value at address given by %rsp
Increment %rsp by 8
Store value at Dest (usually a register)

[
|
|
m Note that the memory does not change, only the value of %rsp

Increasing
address

0x108

x86-64 Stack Example

Initially pushq %$rax popq %rdx
$rax | 0x123 Srax | 0x123 $rax | 0x123
Srdx 0 Srdx 0 Srdx | 0x123
$rsp | 0x108 $rsp | 0x100 $rsp | 0x108
Stack “bottom” Stack “bottom” Stack “bottom”

.

. . .

. . .
0x108 0x108

Stack “top” 0x100 0x123 0x123 ‘)

Stack “top”

Stack “top”

Code Examples

m C code

void multstore (long x, long y, long *dest) {
long t = mult2(x, y);

*dest = t;

}

m Assembly

multstore:
push %rbx # save Yrbx
mov %rdx, %rbx # save dest
callg mult2 # mult2(x, y)
mov Y%rax, (%rbx) # save at dest
pop hrbx # restore J%rbx
retq # return

Code Examples

m C code

long mult2 (long a, long b) {
long s = a * b;

return s;
}
m Assembly
mult2:
mov %rdi, %rax # a
imul Y%rsi, %rax # a *x b

retq # return

Procedure Control Flow

Use stack to support prodecure call and return
Procedure call: call /abel

m Push return address on stack

m Jump to label
Return address:

m Address of the next instruction right after call
Procedure return: ret

m Pop address from stack

m Jump to address

Procedure Control Flow Example

$rip 0x400563 $rip 0x400540 $rip 0x400568
$rsp|0x7fffffffe840 Srsp|0x7fffffffe838 Srsp|0x7fffffffe840
. . .
LRI
. . .
. . .
0x400568

(a) Executing ca11 (b) After ca11 (c) After ret

Procedure Data Flow

m The first six integer or pointer parameters are passed in
registers:

Yrdi
Yrsi
Y%rdx
Yhrcx
%r8
A /r9

m Subsequent parameters (or parameters larger than 64 bits)
should be pushed onto the stack, with the first argument
topmost.

m Return value in Yrax

Stack-Based Languages

m Languages that support recursion
m Code must be “reentrant”
m Multiple simultaneous instantiations of single procedure
m Need some place to store state of each instantiation
m Arguments
m Local variables
m Return pointer

Stack-Based Languages (continued)

m Stack discipline
m State for a given procedure needed for limited time
m From when called to when returned
m Callee returns before caller does
m Stack allocated in frames (activation records)
m State for single procedure instantiation

mf:callsg
m g: calls h twice
m h: recursive

Call Chain Example

Stack Frames

m Contents
m Return information
m Local storage (if needed)
m Temporary space (if needed)
m Management
m Space allocated when procedure is entered
m “set-up” code
m Includes push by call instruction
m Deallocated when returned from procedure
m “finish” code
m Includes pop by ret instruction

x86-64 /Linux Stack Frame

m Current stack frame (“top” to bottom)
m “Argument build:"” parameters for function about to call
m Local variables if cannot keep in registers
m Saved register context
m Old frame pointer (optional)
m Caller stack frame
m Return address (pushed by call instruction)
m Arguments for this call

x86-64 /Linux Stack Frame

Caller memory

Arguments 7+
Return Address

Frame pointer (optional) —» Old %rbp

Saved Register
and
Local Variables

Argument Build (Optional)

Stack pointer -

Example: incr

m C code

long incr(long *p, long val) {

long x = *p;

long y = x + val;
*P =Y

return X;

}
m Assembly code

incr:
movq (hrdi), ‘hrax
addq %hrax, %rsi
movq %rsi, (Yrdi)
ret

Register Saving Conventions

m When procedure foo calls bar:
m foo is the caller
m bar is the callee

m Conventions
m “Caller Saved”
m Caller saves temporary values in its frame before the call
m “Callee Saved”
m Callee saves temporary values in its frame before using
m Callee restores them before returning to caller

x86-64 Linux Register Usage

m Jrax

m Return value

m Caller-saved, can be modified by procedure
m rdi, ..., %r9

m Arguments

m Caller-saved, can be modified by procedure
m %rl0, %ril

m Caller-saved, can be modified by procedure

x86-64 Linux Register Usage

m %rbx, %rl12, %r13, %rld
m Callee-saved, callee must save and restore
m /rbp
m Callee-saved, callee must save and restore
m May be used as frame pointer
m Can mix and match
m /rsp
m Special form of callee save
m Restored to original value upon exit from procedure

Recursive Function Example

m C code

long pcount_r(unsigned long x) {
if (x == 0) {

return O;
}
else {

return (x & 1) + pcount_r(x >> 1);
}

Recursive Function Example

m Assembly
pcount_r

movl $0, %eax # base case
testq Y%rdi, %rdi # |
je .L6 # |
pushq %rbx # caller save
movq %rdi, %rbx # set up call
andl $1, %ebx # | x&1
shrq %rdi # 1 x> 1
call pcount_r # recursive call
addq %rbx, %rax # result
pPorq %hrbx # function completion

.L6:
rep; ret # base case

Observations About Recursion

m Handled without special consideration
m Stack frames mean that each function call has private storage
m Register saving conventions prevent one function call from
corrupting another’s data
m Stack discipline follows call/return pattern

m Also works for mutual recursion

x86-64 Procedure Summary

m Important Points
m Stack is the correct data structure for procedure call/return
m If P calls Q, then Q returns before P
m Recursion handled by normal calling conventions
m Can safely store values in local stack frame and in callee-saved
registers
m Put function arguments at top of stack
m Return result in %rax
m Pointers are addresses of values

