
Machine Programming
Procedures

CPSC 235 - Computer Organization

References

Slides adapted from CMU

http://www.cs.cmu.edu/~213/schedule.html

Outline

Procedures
Mechanisms
Stack Structure
Calling Conventions

Passing Control
Passing Data
Managing local data

Illustration of Recursion

Mechanisms in Procedures

Passing control
To beginning of procedure code
Back to return point

Passing data
Procedure arguments
Return values

Memory management
Allocate during procedure execution
Deallocate upon return

Mechanisms in Procedures (continued)

Mechanisms all implemented with machine instructions, but
the choices are determined by designers. These choices make
up the Application Binary Interface (ABI).
x86-64 implementation of a procedure uses only those
mechanisms required

x86-64 Stack

Region of memory managed with stack discipline
Memory viewed as array of bytes
Different regions have different purposes
(Like ABI, a policy decision)

Grows toward lower addresses
The %rsp register contains the lowest stack address (“top” of
stack)

x86-64 Stack: Push

Syntax: pushq Src

Semantics:
Fetch operand at Src
Decrement %rsp by 8
Write operand at address given by %rsp

x86-64 Stack: Pop

Syntax: popq Dest

Semantics:
Read value at address given by %rsp
Increment %rsp by 8
Store value at Dest (usually a register)
Note that the memory does not change, only the value of %rsp

x86-64 Stack Example

Code Examples

C code

void multstore (long x, long y, long *dest) {
long t = mult2(x, y);
*dest = t;

}

Assembly

multstore:
push %rbx # save %rbx
mov %rdx, %rbx # save dest
callq mult2 # mult2(x, y)
mov %rax, (%rbx) # save at dest
pop %rbx # restore %rbx
retq # return

Code Examples

C code

long mult2 (long a, long b) {
long s = a * b;
return s;

}

Assembly

mult2:
mov %rdi, %rax # a
imul %rsi, %rax # a * b
retq # return

Procedure Control Flow

Use stack to support prodecure call and return
Procedure call: call label

Push return address on stack
Jump to label

Return address:
Address of the next instruction right after call

Procedure return: ret
Pop address from stack
Jump to address

Procedure Control Flow Example

Procedure Data Flow

The first six integer or pointer parameters are passed in
registers:

1 %rdi
2 %rsi
3 %rdx
4 %rcx
5 %r8
6 %r9

Subsequent parameters (or parameters larger than 64 bits)
should be pushed onto the stack, with the first argument
topmost.

Return value in %rax

Stack-Based Languages

Languages that support recursion
Code must be “reentrant”

Multiple simultaneous instantiations of single procedure
Need some place to store state of each instantiation

Arguments
Local variables
Return pointer

Stack-Based Languages (continued)

Stack discipline
State for a given procedure needed for limited time

From when called to when returned
Callee returns before caller does

Stack allocated in frames (activation records)
State for single procedure instantiation

Call Chain Example
f: calls g
g: calls h twice
h: recursive

Stack Frames

Contents
Return information
Local storage (if needed)
Temporary space (if needed)

Management
Space allocated when procedure is entered

“set-up” code
Includes push by call instruction

Deallocated when returned from procedure
“finish” code
Includes pop by ret instruction

x86-64/Linux Stack Frame

Current stack frame (“top” to bottom)
“Argument build:” parameters for function about to call
Local variables if cannot keep in registers
Saved register context
Old frame pointer (optional)

Caller stack frame
Return address (pushed by call instruction)
Arguments for this call

x86-64/Linux Stack Frame

Example: incr

C code

long incr(long *p, long val) {
long x = *p;
long y = x + val;
*p = y;
return x;

}

Assembly code

incr:
movq (%rdi), %rax
addq %rax, %rsi
movq %rsi, (%rdi)
ret

Register Saving Conventions

When procedure foo calls bar:
foo is the caller
bar is the callee

Conventions
“Caller Saved”

Caller saves temporary values in its frame before the call
“Callee Saved”

Callee saves temporary values in its frame before using
Callee restores them before returning to caller

x86-64 Linux Register Usage

%rax
Return value
Caller-saved, can be modified by procedure

%rdi, . . ., %r9
Arguments
Caller-saved, can be modified by procedure

%r10, %r11
Caller-saved, can be modified by procedure

x86-64 Linux Register Usage

%rbx, %r12, %r13, %r14
Callee-saved, callee must save and restore

%rbp
Callee-saved, callee must save and restore
May be used as frame pointer
Can mix and match

%rsp
Special form of callee save
Restored to original value upon exit from procedure

Recursive Function Example

C code

long pcount_r(unsigned long x) {
if (x == 0) {

return 0;
}
else {

return (x & 1) + pcount_r(x >> 1);
}

}

Recursive Function Example

Assembly

pcount_r
movl $0, %eax # base case
testq %rdi, %rdi # |
je .L6 # |
pushq %rbx # caller save
movq %rdi, %rbx # set up call
andl $1, %ebx # | x & 1
shrq %rdi # | x >> 1
call pcount_r # recursive call
addq %rbx, %rax # result
popq %rbx # function completion

.L6:
rep; ret # base case

Observations About Recursion

Handled without special consideration
Stack frames mean that each function call has private storage
Register saving conventions prevent one function call from
corrupting another’s data
Stack discipline follows call/return pattern

Also works for mutual recursion

x86-64 Procedure Summary

Important Points
Stack is the correct data structure for procedure call/return
If P calls Q, then Q returns before P

Recursion handled by normal calling conventions
Can safely store values in local stack frame and in callee-saved
registers
Put function arguments at top of stack
Return result in %rax

Pointers are addresses of values

