Machine Programming Basics

CPSC 235 - Computer Organization

References

m Slides adapted from CMU

http://www.cs.cmu.edu/~213/schedule.html

Outline

m History of Intel processors and architectures
m Assembly basics: registers, operands, move
m Arithmetic and logical operations

m C, assembly and machine code

Intel x86 Processors

m Dominate laptop/desktop/server market

m Evolutionary design
m Backwards compatible up until 8086, introduced in 1978
m Added more features as time goes on

m Complex instruction set computer (CISC)
m Many different instructions with many different formats

m Difficult to match performance of Reduced Instruction Set
Computers (RISC)

m But, Intel has done just that in terms of speed, less so for low
power

Intel x86 Evolution: Milestones

Name Date Transistors MHz Notes

8086 1978 29K 5-10 16-bit

386 1985 275K 16-33 32-bit

Pentium 4E 2004 125M 2800-3800 64-bit
Core 2 2006 291M 1060-3333 multi-core
Core i7 2008 731M 1600-4400 four cores

x86 Clones: Advanced Micro Devices

(AMD)

m Historically
m AMD has followed just behind Intel
m A little bit slower, a lot cheaper

m Then

m Recruited top circuit designers from Digital Equipment
Corp. and other downward trending companies

m Built Opteron: tough competitor to Pentium 4

m Developed x86-64, their own extension to 64 bits
m Recent years

m Intel leads the world in semiconductor technology

m AMD has fallen behind

Intel's 64 bit History

m 2001: Intel attempts radical shift from 1A32 to 1A64
m Totally different architecture (Itanium)
m Performance disappointing
m 2003: AMD steps in with evolutional solution
m x86-64 (now called “AMDG64")
m 2004: Intel Announces EM64T extension to 1A32
m Extended Memory 64 bit Technology
m Almost identical to x86-64
m All but low-end x86 processors support x86-64

m but, lots of code still runs in 32 bit mode

Definitions

m Architecture: the parts of a processor design that one needs to
understand for writing correct machine/assembly code

m Machine code: the byte level programs that a processor executes
m Assembly code: a text representation of machine code
m Microarchitecture: implementation of the architecture
m Example Instruction Set Architectures (ISA)
m Intel: x86, 1A32, Itanium, x86-64
m ARM: Used in almost all mobile phones

m RISC V: new open source ISA

Assembly/Machine Code View

m Programmer Visible State
m PC: Program counter
m Address of next instruction
m Register file
m Condition codes

m store status information about most recent arithmetic or logical
operation

m Memory
m Byte addressable array
m Code and user data

m Stack to support procedures

Assembly Characteristics

“Integer” data of 1, 2, 4, or 8 bytes

m data values
m addresses (untyped pointers)

Floating point data of 4, 8, or 10 bytes
SIMD vector data types of 8, 16, 32, or 64 bytes
Code: byte sequences encoding series of instructions

No aggregate types such as arrays or structures

x86-64 Integer Registers

8-byte register bytes 0-3 bytes 0-1 byte 0
Y%rax %eax Y%ax %al
%rex %ecx %cx %cl
Y%rdx %edx %dx %dlI
%rbx %ebx %bx %bl
Yrsi %esi Y%si Y%sil
%rdi Y%edi %di %dil
%rsp %esp %sp %spl
%rbp %ebp %bp %bpl

x86-64 Integer Registers (continued)

8-byte register bytes 0-3 bytes 0-1 byte 0

%r8 %r8d %r8w %r8b

%r9 %r9d %r9w %r9b

%r10 %r10d %r10w %r10b
%rll %rlld %rllw %rllb
%r12 %r12d %r12w %r12b
%r13 %r13d %r13w %r13b
%rl4 %rl4d %rl4w %r14b

%rl5 %r15d %r15w %r15b

x86-64 Integer Registers (continued)

m Some assembly instructions include a suffix that indicates what
portion of the register is accessed:

m : “quadword” 8 bytes
m |: “double word" lower 4 bytes
m w: “word"” lower 2 bytes

m b: “byte” lowest byte

Assembly Characteristics: Operations

m Transfer data between memory and register

m Load data from memory into register

m Store register data into memory
m Perform arithmetic function on register or memory data
m Transfer control

m Unconditional jumps to/from procedures

m Conditional branches

m Indirect branches

Moving Data

m Instruction:
m movq source (Src), destination (Dest)

m Operand types
m Immediate (Imm): constant integer data
m Register (Reg): one of 16 integer registers

m Memory (Mem): 8 consecutive bytes of memory at address
given by register

movqg Operand Combinations

Source Destination Example C Analog

Imm Reg movq $0x4, %rax temp = 0x04;
Imm Mem movq $-147, (%rax) x*p = -147;

Reg Reg movq %rax, %rdx temp2 = templ;
Reg Mem movq %rax, (Y%rdx) *p = temp;
Mem Reg movq (%rax), %rdx temp = *p;

Memory Addressing Modes

m Immediate
m $val
m val: constant integer value
m example: movq $7, %rax
m Normal
m (R) Mem[Reg[R]]
m R: register R specifies memory address

m movq (Y%rcx), Y%rax

Memory Addressing Modes (continued)

m Displacement
m D(R) Mem[Reg[R] + D]
m R: register specifies start of memory region
m D: constant displacement D specifies offset

m example: movqg 8(%rdi), Y%rdx

Memory Addressing Modes (continued)

m Indexed
m D(Rb, Ri, S) Mem[Reg[Rb] + S*Reg|[Ri]+D]
m D: constant displacement 1, 2, or 4 bytes
m Rb: base register
m Ri: index register: any except %esp
m S:scale: 1,2, 4,0r8

m example: movq 0x100(%rcx, %rax, 4), %rdx

Addressing Modes Example

m Example C code

void swap (long *xp, long *yp) {
long tO = *xp;
long t1 = *yp;
*xXp = ti;
*yp = tO;

Addressing Modes Example

m x86 assembly version

Jrdi = xp
%rsi = yp
swap:

movq (Yirdi), %rax # tO = *xp
movq (hrsi), %rdx # tl1 = *yp
movq %rdx, (%rdi) # *xp = tl
movq %rax, (%rsi) # xyp = tO
ret

Address Computation Examples

m rdx contains 0xf000

m rcx contains 0x0100

Expression Address Computation Address
0x8 (Y%rdx) 0xf000 + 0x8 0xf008
(%rdx, %rcx) 0xf000 + 0x100 0x£100

(%rdx, %rcx, 4) 0xf000 + 4%0x100 0xf400
0x80(, %rdx,2) 2*%0xf000 + 0x80 0x1e080

Address Computation Instruction

m leaq Src, Dest

m Load effective address of source into destination
m Uses

m Computing addresses without a memory reference

m Computing arithmetic expressions of the form x + k * y
m Example

long m12(long x) {
return x*12;

}

leaq (%rdi, %rdi, 2), %rax # t = x+2xx
salq $2, %rax

Some Arithmetic Operations

m Binary operators

addq
subq
imulq
salq
sarq
shrq
xorq
andq
orq

Src, Dest
Src, Dest
Src, Dest
Src, Dest
Src, Dest
Src, Dest
Src, Dest
Src, Dest
Src, Dest

Dest = Dest + Src

Dest = Dest - Src

Dest = Dest * Src

Dest = Dest << Src

Dest = Dest >> Src (arithmetic)
Dest = Dest >> Src (logical)
Dest = Dest ~ Src

Dest = Dest & Src

Dest = Dest | Src

m Be careful of the argument order

Some Arithmetic Operations

m Unary operators

incq
decq

negq
notq

Dest
Dest
Dest
Dest

Dest = Dest + 1
Dest = Dest - 1
Dest = - Dest
Dest = ~ Dest

Arithmetic Expression Example

m C code

long arith (long x, long y, long z) {
long tl1 = x+y;
long t2 = z+t1l;
long t3 = x+4;
long t4 = y * 48;
long t5 = t3 + t4;
long rval = t2 + t5;
return rval;

Arithmetic Expression

m Assembly code

Jrdi
JYrsi
Yrdx
arith:

leaq
salq
leaq
addq
addq
addq
ret

o
<

(%rsi,%rsi,2), %rax
$4, Yrax

4 (%rdi,%rax), %rax
Y%rsi, Y%rdi

f%rdx, ‘%rdi

%rdi, Y%rax

Example

Turning C into Object Code

m Code in files pl.c and p2.c

m Compile with command: gcc -0Og pl.c p2.c -0 p
m use basic optimizations (-0g)
m put resulting binary in file p

m The above gcc command runs the following programs:

m source text — cpp — compiler — assembler — linker

Assembly

m Compiling C to assembly: gcc -0g -S <file>
m produces an assembly file <file>.s

m Disassembling Code: objdump -d <file>
m useful tool for examing object code
m analyzes bit pattern of series of instructions

m produces approximate rendition of assembly code

Summary

m History of Intel processors and architectures
m C, assembly, machine code
m new forms of visible state: program counter, registers, ...

m Compiler must transform language constructs into low level
instruction sequences

m Assembly basics: registers, operands, move

m Arithmetic

