
Machine Programming Basics
CPSC 235 - Computer Organization

References

Slides adapted from CMU

http://www.cs.cmu.edu/~213/schedule.html

Outline

History of Intel processors and architectures

Assembly basics: registers, operands, move

Arithmetic and logical operations

C, assembly and machine code

Intel x86 Processors

Dominate laptop/desktop/server market

Evolutionary design
Backwards compatible up until 8086, introduced in 1978

Added more features as time goes on

Complex instruction set computer (CISC)
Many different instructions with many different formats

Difficult to match performance of Reduced Instruction Set
Computers (RISC)

But, Intel has done just that in terms of speed, less so for low
power

Intel x86 Evolution: Milestones

Name Date Transistors MHz Notes

8086 1978 29K 5-10 16-bit
386 1985 275K 16-33 32-bit

Pentium 4E 2004 125M 2800-3800 64-bit
Core 2 2006 291M 1060-3333 multi-core
Core i7 2008 731M 1600-4400 four cores

x86 Clones: Advanced Micro Devices
(AMD)

Historically
AMD has followed just behind Intel

A little bit slower, a lot cheaper

Then
Recruited top circuit designers from Digital Equipment
Corp. and other downward trending companies

Built Opteron: tough competitor to Pentium 4

Developed x86-64, their own extension to 64 bits

Recent years
Intel leads the world in semiconductor technology

AMD has fallen behind

Intel’s 64 bit History

2001: Intel attempts radical shift from IA32 to IA64
Totally different architecture (Itanium)

Performance disappointing

2003: AMD steps in with evolutional solution
x86-64 (now called “AMD64”)

2004: Intel Announces EM64T extension to IA32
Extended Memory 64 bit Technology

Almost identical to x86-64

All but low-end x86 processors support x86-64
but, lots of code still runs in 32 bit mode

Definitions

Architecture: the parts of a processor design that one needs to
understand for writing correct machine/assembly code

Machine code: the byte level programs that a processor executes

Assembly code: a text representation of machine code

Microarchitecture: implementation of the architecture

Example Instruction Set Architectures (ISA)
Intel: x86, IA32, Itanium, x86-64

ARM: Used in almost all mobile phones

RISC V: new open source ISA

Assembly/Machine Code View

Programmer Visible State
PC: Program counter

Address of next instruction

Register file

Condition codes

store status information about most recent arithmetic or logical
operation

Memory
Byte addressable array

Code and user data

Stack to support procedures

Assembly Characteristics

“Integer” data of 1, 2, 4, or 8 bytes
data values
addresses (untyped pointers)

Floating point data of 4, 8, or 10 bytes

SIMD vector data types of 8, 16, 32, or 64 bytes

Code: byte sequences encoding series of instructions

No aggregate types such as arrays or structures

x86-64 Integer Registers

8-byte register bytes 0-3 bytes 0-1 byte 0

%rax %eax %ax %al
%rcx %ecx %cx %cl
%rdx %edx %dx %dl
%rbx %ebx %bx %bl
%rsi %esi %si %sil
%rdi %edi %di %dil
%rsp %esp %sp %spl
%rbp %ebp %bp %bpl

x86-64 Integer Registers (continued)

8-byte register bytes 0-3 bytes 0-1 byte 0

%r8 %r8d %r8w %r8b
%r9 %r9d %r9w %r9b
%r10 %r10d %r10w %r10b
%r11 %r11d %r11w %r11b
%r12 %r12d %r12w %r12b
%r13 %r13d %r13w %r13b
%r14 %r14d %r14w %r14b
%r15 %r15d %r15w %r15b

x86-64 Integer Registers (continued)

Some assembly instructions include a suffix that indicates what
portion of the register is accessed:

q: “quadword” 8 bytes

l: “double word” lower 4 bytes

w: “word” lower 2 bytes

b: “byte” lowest byte

Assembly Characteristics: Operations

Transfer data between memory and register
Load data from memory into register

Store register data into memory

Perform arithmetic function on register or memory data

Transfer control
Unconditional jumps to/from procedures

Conditional branches

Indirect branches

Moving Data

Instruction:
movq source (Src), destination (Dest)

Operand types
Immediate (Imm): constant integer data

Register (Reg): one of 16 integer registers

Memory (Mem): 8 consecutive bytes of memory at address
given by register

movq Operand Combinations

Source Destination Example C Analog

Imm Reg movq $0x4, %rax temp = 0x04;
Imm Mem movq $-147, (%rax) *p = -147;
Reg Reg movq %rax, %rdx temp2 = temp1;
Reg Mem movq %rax, (%rdx) *p = temp;
Mem Reg movq (%rax), %rdx temp = *p;

Memory Addressing Modes

Immediate
$val

val: constant integer value

example: movq $7, %rax

Normal
(R) Mem[Reg[R]]

R: register R specifies memory address

movq (%rcx), %rax

Memory Addressing Modes (continued)

Displacement
D(R) Mem[Reg[R] + D]

R: register specifies start of memory region

D: constant displacement D specifies offset

example: movq 8(%rdi), %rdx

Memory Addressing Modes (continued)

Indexed
D(Rb, Ri, S) Mem[Reg[Rb] + S*Reg[Ri]+D]

D: constant displacement 1, 2, or 4 bytes

Rb: base register

Ri: index register: any except %esp

S: scale: 1, 2, 4, or 8

example: movq 0x100(%rcx, %rax, 4), %rdx

Addressing Modes Example

Example C code

void swap (long *xp, long *yp) {
long t0 = *xp;
long t1 = *yp;
*xp = t1;
*yp = t0;

}

Addressing Modes Example

x86 assembly version

%rdi = xp
%rsi = yp

swap:
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

Address Computation Examples

rdx contains 0xf000

rcx contains 0x0100

Expression Address Computation Address

0x8 (%rdx) 0xf000 + 0x8 0xf008
(%rdx, %rcx) 0xf000 + 0x100 0xf100
(%rdx, %rcx, 4) 0xf000 + 4*0x100 0xf400
0x80(,%rdx,2) 2*0xf000 + 0x80 0x1e080

Address Computation Instruction

leaq Src, Dest
Load effective address of source into destination

Uses
Computing addresses without a memory reference

Computing arithmetic expressions of the form x + k * y

Example

long m12(long x) {
return x*12;

}

leaq (%rdi, %rdi, 2), %rax # t = x+2*x
salq $2, %rax

Some Arithmetic Operations

Binary operators

addq Src, Dest Dest = Dest + Src
subq Src, Dest Dest = Dest - Src
imulq Src, Dest Dest = Dest * Src
salq Src, Dest Dest = Dest << Src
sarq Src, Dest Dest = Dest >> Src (arithmetic)
shrq Src, Dest Dest = Dest >> Src (logical)
xorq Src, Dest Dest = Dest ˆ Src
andq Src, Dest Dest = Dest & Src
orq Src, Dest Dest = Dest | Src

Be careful of the argument order

Some Arithmetic Operations

Unary operators

incq Dest Dest = Dest + 1
decq Dest Dest = Dest - 1
negq Dest Dest = - Dest
notq Dest Dest = ~ Dest

Arithmetic Expression Example

C code

long arith (long x, long y, long z) {
long t1 = x+y;
long t2 = z+t1;
long t3 = x+4;
long t4 = y * 48;
long t5 = t3 + t4;
long rval = t2 + t5;
return rval;

}

Arithmetic Expression Example

Assembly code

%rdi = x
%rsi = y
%rdx = z

arith:
leaq (%rsi,%rsi,2), %rax
salq $4, %rax
leaq 4(%rdi,%rax), %rax
addq %rsi, %rdi
addq %rdx, %rdi
addq %rdi, %rax
ret

Turning C into Object Code

Code in files p1.c and p2.c

Compile with command: gcc -Og p1.c p2.c -o p

use basic optimizations (-Og)

put resulting binary in file p

The above gcc command runs the following programs:
source text → cpp → compiler → assembler → linker

Assembly

Compiling C to assembly: gcc -Og -S <file>

produces an assembly file <file>.s

Disassembling Code: objdump -d <file>

useful tool for examing object code

analyzes bit pattern of series of instructions

produces approximate rendition of assembly code

Summary

History of Intel processors and architectures

C, assembly, machine code
new forms of visible state: program counter, registers, . . .

Compiler must transform language constructs into low level
instruction sequences

Assembly basics: registers, operands, move

Arithmetic

