
Logic Design
CPSC 235 - Computer Organization



References

Slides adapted from CMU

http://www.cs.cmu.edu/afs/cs/academic/class/15349-s02/3e/www/


Outline

Introduction to binary logic gates
Truth table construction
Logic functions and their simplifications
Laws of binary logic



Overview of Logic Design

Fundamental Hardware Requirements
Communication (how to get values from one place to another)
Computation
Storage

Bits
Everything expressed in terms of values 0 and 1
Communication: low or high voltage on wire
Computation: compute with Boolean functions
Storage: store bits of information



Digital Signals

Use voltage thresholds to extract discrete values from
continuous signal.
Simplest version: 1-bit signal

Either high range (1) or low range (0)
With guard range between them

Not strongly affected by noise or low quality circuit elements
Can make circuits simple, small and fast



Semiconductors to Computers

Increasing levels of complexity
Transistors built from semiconductors
Logic gates built from transistors
Logic functions built from gates
Flip-flops built from logic
Counters and sequencers from flip-flops
Microprocessors from sequencers
Computers from microprocessors



Semiconductors to Computers

Increasing levels of Abstraction
Physics
Transistors
Gates (this lecture)
Logic (this lecture)
Microprogramming
Assembler
Programming languages
Applications



Logic Gates

Basic logic circuits with one or more inputs and one output are
called gates
Gates are used as the building blocks in the design of more
complex digital logic circuits.



Representing Logic Functions

There are several ways of representing logic functions:
Symbols to represent the gates
Truth tables
Boolean algebra



NOT Gate

Truth table

a y

0 1
1 0

Boolean algebra

y = a



AND Gate

Truth table

a b y

0 0 0
0 1 0
1 0 0
1 1 1

Boolean algebra

y = a · b



OR Gate

Truth table

a b y

0 0 0
0 1 1
1 0 1
1 1 1

Boolean algebra

y = a + b



XOR Gate

Truth table

a b y

0 0 0
0 1 1
1 0 1
1 1 0

Boolean algebra

y = a ⊕ b



NOT AND (NAND) Gate

Truth table

a b y

0 0 1
0 1 1
1 0 1
1 1 0

Boolean algebra

y = a · b



NOT OR (NOR) Gate

Truth table

a b y

0 0 1
0 1 0
1 0 0
1 1 0

Boolean algebra

y = a + b



Boolean Algebra

Boolean algebra can be used to design combinational logic
circuits

OR
a + 0 = a
a + a = a
a + 1 = 1
a + a = 1

AND
a · 0 = 0
a · a = a
a · 1 = a
a · a = 0



Boolean Algebra Properties

Commutation
a + b = b + a
a · b = b · a

Association
(a + b) + c = a + (b + c)
(a · b) · c = a · (b · c)

Distribution
a · (b + c) = (a · b) + (a · c)
a + (b · c) = (a + b) · (a + c)

Absorption
a + (a · c) = a
a · (a + c) = a



Boolean Algebra Example

Simplify

x · y · z + x · y · z + x · y · z + x · y · z
x · y · (z + z) + y · z · (x + x)
x · y · 1 + y · z · 1
x · y + y · z



DeMorgan’s Theorem

a + b + c + . . . = a · b · c · . . .

a · b · c · . . . = a + b + c + . . .

Proof for a + b = a · b

a b a + b a · b

0 0 1 1
0 1 0 0
1 0 0 0
1 1 0 0



DeMorgan’s Example

Simplify

a · b + a · (b + c) + b · (b + c)
a · b + a · b · c + b · b · c
a · b + a · b · c
a · b



DeMorgan’s in Gates

The function f = a · b + c · d can be implemented with AND
and OR gates



DeMorgan’s in Gates

Two consecutive NOT gates cancel out.



DeMorgan’s in Gates

The function f = a · b + c · d can be simplified to use only
NAND gates.



Logic Minimisation

Any Boolean function can be implemented directly using
combinational logic
Simplifying the Boolean function will reduce the number of
gates required to implement the function
Logic minimization techniques:

Algebraic manipulation
Karnaugh (K) mapping (visual approach)
Tabular approaches (for example Quine-McCluskey)

Karnaugh mapping is usually preferred for up to about 5
variables



Truth Tables
f is defined by the following truth table

x y z f minterms

0 0 0 1 x · y · z
0 0 1 1 x · y · z
0 1 0 1 x · y · z
0 1 1 1 x · y · z
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1 x · y · z

A minterm must contain all variables (in either complemented
or uncomplemented form)



Disjunctive Normal Form

A Boolean function expressed as the disjunction (OR) of its
minterms is said to be in the Disjunctive Normal Form (DNF)

Example:

f = x · y · z + x · y · z + x · y · z + x · y · z + x · y · z

A Boolean function expressed as the ORing of ANDed variables
(not necessarily minterms) is in Sum of Products (SOP) form.

f = x + y · z



Maxterms

A maxterm of n Boolean variables is the disjunction of all the
variables either in complemented or uncomplemented form.

Example (referring to the truth table for f )

f = x · y · z + x · y · z + z · y · z
f = (x + y + z) · (x + y + z) · (x + y + z)

The maxterms of f are effectively the minterms of f with each
variable complemented.



Conjunctive Normal Form

A Boolean function expressed as the conjunction (AND) of its
maxterms is said to be in Conjunctive Normal Form (CNF)

Example:

f = (x + y + z) · (x + y + z) · (x + y + z)

A Boolean function expressed as the ANDing of ORed variables
(not necessarily maxterms) is often said to be in Product of
Sums (POS) form.



Logic Simplification

Boolean algebra can be used to simplify logical expressions.
Note: the DNF and CNF are not simplified
There is a technique called Karnaugh mapping that is
sometimes easier (for humans to do)



Karnaugh Maps

Karnaugh Maps (or K-maps) are a powerful visual tool for
carrying out simplification and manipulation of logical
expressions with less than 6 variables.

The K-map is a rectangular array of cells
Each possible state of the input variables corresponds uniquely
to one of the cells
The corresponding output state is written in each cell



K-map Example

Simplify:

f = x · y · z + x · y · z + x · y · z + x · y · z + x · y · z

K-map:



K-map Example

Group terms
With size equal to a power of 2
Large groups best since they contain fewer variables
Groups can wrap around edges and corners

Simplified: f = x + y · z



K-map Example
Plot f = a · b + b · c · d

In a 4 variable map:
1 variable term occupies 8 cells
2 variable terms ocuppy 4 cells
3 variable terms occupy 2 cells, etc.



K-map Example

Plot f = b



K-map Example

Plot f = b · d



K-map Example

Simplify f = a · bd + b · c · d + a · b · c · d + c · d

f = a · b + c · d



POS Simplification

Note that the previous examples yielded simplified expressions
in the SOP form

Suitable for implementations using AND followed by OR gates,
or only NAND gates

Sometimes we may wish to get a simplified expression in POS
form

Suitable for implementations using OR followed by AND gates,
or only NOR gates

To do this we group zeros in the map, then apply DeMorgan’s
and complement



POS Example
Simplify f = a · b + b · c · d into POS form

Simplified: f = b + a · c + a · d

Applying DeMorgan’s: f = b · (a + c) · (a + d)



Expressions in POS Form

Apply DeMorgan’s and take the complement, that is, f is now
in SOP form

Fill in zeros in table, that is, plot f

Fill remaining cells with ones, that is, plot f

Simplify in the usual way by grouping ones to simplify f



Don’t Care Conditions

Sometimes we do not care about the output value of a
combinational logic circuit, for example, if certain input
combinations can never occur.

These are called don’t care conditions

In a simplification they may be treated as 0 or 1 depending on
which gives the simplest result



Don’t Care Conditions Example

Simplify the function f = a · b · d + a · c · d + a · c · d with
don’t care conditions a · b · c · d , a · b · c · d , a · b · c · d

Simplified: f = a · b + c · d or f = a · d + c · d



K-map Definitions

Cover - a term is said to cover a minterm if that minterm is
part of that term

Prime implicant - a term that cannot be further combined

Essential term - a prime implicant that covers a minterm that
no other prime implicant covers

Covering set - a minimum set of prime implicants which
includes all essential terms plus any other prime implicants
required to cover all minterms



Combinational Circuit Example

Truth table

a b out

0 0 1
0 1 0
1 0 0
1 1 1



Half Adder

Adds two single bit binary numbers a and b (note: no carry
input)

Truth table

a b cout sum

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0



Full adder

Adds two single bit numbers a and b (note: with a carry input)

Truth table

cin a b cout sum

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1



Ripple Carry Adder

The half adder and full adder implement two bit binary
addition with and without carry-in

In general, we need to add two n bit binary numbers

The ripple carry adder is n full adders cascaded together.

Example: 4 bit adder

Note: if a is complemented and c0 set to 1, then the operation
is: s = b − a



Bit-Level Multiplexor
A bit-level multiplexor has data signals a and b and a control
signal c outputs a or b depending on c

Truth table

a b c out

0 0 0 0 (b)
0 0 1 0 (a)
0 1 0 1 (b)
0 1 1 0 (a)
1 0 0 0 (b)
1 0 1 1 (a)
1 1 0 1 (b)
1 1 1 1 (a)



Bit-Level Multiplexor



Arithmetic Logic Unit

Combinational logic – a more complex version of a multiplexor

Control signal selects function computed

Also computes condition codes

Example: four function ALU



Memory Elements

Sequential logic has a memory
A memory stores data
The snapshot of the memory is called the state
A one bit memory is called bistable, that is, it has two internal
states
Flip-flops and latches are implementations of bistables



RS Latch

An RS latch is a memory element with two inputs: reset (R)
and set (S), and two outputs: Q and Q

S R Q′ Q′ comment

0 0 Q Q hold
0 1 0 1 reset
1 0 1 0 set
1 1 0 0 illegal

where Q′ is the next state and Q is the current state.



RS Latch



RS Latch State Transition Table

A state transition table is a way of viewing the operation of an
RS latch.

Q S R Q′ comment

0 0 0 0 hold
0 0 1 0 reset
0 1 0 1 set
0 1 1 0 illegal
1 0 0 1 hold
1 0 1 0 reset
1 1 0 1 set
1 1 1 0 illegal



Clocks and Synchronous Circuits

The RS latch output state changes occur directly in response to
changes in the inputs. This is called asynchronous operation.

Most sequential circuits employ synchronous operation.
The output is constrained to change only at a time specified by
a global enabling signal
This signal is generally called the system clock

The clock is typically a square wave signal at a particular
frequency that imposes order on the state changes.



Gated RS Latch

The RS latch can be modified to only change state when a
valid enable signal (such as from the system clock) is present.



Registers

Store a word of data
Different from program registers seen in assembly code

Collection of edge-triggered latches (one for every bit in word)
Loads input on rising edge of clock



Register Operation

Stores data bits
Generally acts as a barrier between input and output
As clock rises, loads input



State Machine Example

Accumulator circuit
Load or accumulate on each cycle



Random-Access Memory

Stores multiple words of memory
Address input specifies which word to read or write

Register file
Holds values of program registers



Register File Timing

Reading
Like combinational logic
Output generated based on input address (after some delay)

Writing
Like register
Update only as clock rises



Summary

Computation
Performed by combinational logic
Computes Boolean functions
Continuously reacts to input changes

Storage
Registers

Hold single words
Loaded as clock rises

Random-access memories
Hold multiple words
Can have multiple read or write ports
Read a word when address input changes
Write word as clock rises


