Logic Design

CPSC 235 - Computer Organization

References

m Slides adapted from CMU

http://www.cs.cmu.edu/afs/cs/academic/class/15349-s02/3e/www/

Outline

Introduction to binary logic gates

Truth table construction

Logic functions and their simplifications
Laws of binary logic

Overview of Logic Design

m Fundamental Hardware Requirements
m Communication (how to get values from one place to another)
m Computation
m Storage

m Bits

Everything expressed in terms of values 0 and 1
Communication: low or high voltage on wire
Computation: compute with Boolean functions
Storage: store bits of information

Digital Signals

m Use voltage thresholds to extract discrete values from
continuous signal.
m Simplest version: 1-bit signal
m Either high range (1) or low range (0)
m With guard range between them

m Not strongly affected by noise or low quality circuit elements
m Can make circuits simple, small and fast

Semiconductors to Computers

m Increasing levels of complexity

Transistors built from semiconductors
Logic gates built from transistors

Logic functions built from gates
Flip-flops built from logic

Counters and sequencers from flip-flops
Microprocessors from sequencers
Computers from microprocessors

Semiconductors to Computers

m Increasing levels of Abstraction
m Physics

Transistors

Gates (this lecture)

Logic (this lecture)

Microprogramming

Assembler

Programming languages

Applications

Logic Gates

m Basic logic circuits with one or more inputs and one output are

called gates
m Gates are used as the building blocks in the design of more

complex digital logic circuits.

Representing Logic Functions

m There are several ways of representing logic functions:
m Symbols to represent the gates
m Truth tables
m Boolean algebra

NOT Gate

a«Dry

m Truth table

[«§)
<

= O
o =

m Boolean algebra

m Truth table

m Boolean algebra

AND Gate

9]

= = O O
= O = OO
_H O O Ol

OR Gate

m Truth table

9]

= = O O
= O = OO
R R RO

m Boolean algebra

y=a+b

m Truth table

m Boolean algebra

XOR Gate

9]

= = O O
= O = OO
o~ R OlIK

y=adb

NOT AND (NAND) Gate

m Truth table

[5)
o
<

= = O O
= O = O
[e O

m Boolean algebra

NOT OR (NOR) Gate

m Truth table

[5)
o
<

= = O O
= O = O
OO O =

m Boolean algebra

m Boolean algebra can be used to design combinational logic

circuits

m OR

a+0=a
ata=a
at+1=1
at+a=1

L L L L

Boolean Algebra

Boolean Algebra Properties

Commutation
mat+tb=b+a
mab=b-a
Association
m(at+b)+c=a+(b+c)
m(a-b)-c=a-(b-c)
Distribution
ma-(b+c)=(a-b)+(a-c)
mat(b-c)=(a+b)-(a+¢)
Absorption
mat(a-c)=a
ma-(atc)=a

Boolean Algebra Example

m Simplify

YTz

X X X X

DeMorgan’s Theorem

a b a+b 3-b
0 O 1 1
0 1 0 0
1 0 0 0
1 1 0 0

DeMorgan’s Example

m Simplify

+ o
o
o o
ol

[\5})
—
ol
o o +

+ o+ o+
5]

ol ol ol ol
)

DeMorgan’s in Gates

m The function f = a- b+ ¢ - d can be implemented with AND
and OR gates

PNy
D

 —

b —

d —

DeMorgan’s in Gates

m Two consecutive NOT gates cancel out.

DeMorgan’s in Gates

m The function f = a- b+ ¢ - d can be simplified to use only
NAND gates.

PN
D

 —

b —

d —

Logic Minimisation

Any Boolean function can be implemented directly using
combinational logic
Simplifying the Boolean function will reduce the number of
gates required to implement the function
Logic minimization techniques:

m Algebraic manipulation

m Karnaugh (K) mapping (visual approach)

m Tabular approaches (for example Quine-McCluskey)

Karnaugh mapping is usually preferred for up to about 5
variables

Truth Tables

m f is defined by the following truth table

x y z f minterms
0 00 1 Xxy-z
0 01 1 Xx-y-z
01 01 x-y-Zz
01 1 1 X-y-z
1 0 0 O
1 0 1 0
11 0 O
1 1 11 x-y-z

m A minterm must contain all variables (in either complemented
or uncomplemented form)

Disjunctive Normal Form

m A Boolean function expressed as the disjunction (OR) of its
minterms is said to be in the Disjunctive Normal Form (DNF)

m Example:
=Xy Z+X Y- Z+X-y-Z+X-y-Z2+x-y-2z

m A Boolean function expressed as the ORing of ANDed variables
(not necessarily minterms) is in Sum of Products (SOP) form.

f=Xx+y- -z

Maxterms

m A maxterm of n Boolean variables is the disjunction of all the
variables either in complemented or uncomplemented form.

m Example (referring to the truth table for f)

YVZ+x-y-z+z-y-Z
=X+y+z)- X+y+2)- (X+y+2)

m The maxterms of f are effectively the minterms of f with each
variable complemented.

Conjunctive Normal Form

m A Boolean function expressed as the conjunction (AND) of its
maxterms is said to be in Conjunctive Normal Form (CNF)

m Example:
f=X+y+z)- X+y+2)-X+y+2)
m A Boolean function expressed as the ANDing of ORed variables

(not necessarily maxterms) is often said to be in Product of
Sums (POS) form.

Logic Simplification

m Boolean algebra can be used to simplify logical expressions.

m Note: the DNF and CNF are not simplified

m There is a technique called Karnaugh mapping that is
sometimes easier (for humans to do)

Karnaugh Maps

Karnaugh Maps (or K-maps) are a powerful visual tool for
carrying out simplification and manipulation of logical
expressions with less than 6 variables.

The K-map is a rectangular array of cells

m Each possible state of the input variables corresponds uniquely

to one of the cells
m The corresponding output state is written in each cell

K-map Example

m Simplify:

=Xy Z+X Y- Z4+X-y-Z+X-y-Z2+x-y-2z

m K-map
I
—_
f(z,y,2) %
000 001 101 100
0 0

olo |oil 111 110
Yy 1 1 1 0

K-map Example

m Group terms

m With size equal to a power of 2
m Large groups best since they contain fewer variables
m Groups can wrap around edges and corners

I
—

f(z,y,2) - *
000 ool 101 1000

0 0

olo [otr i1 110
Yy 1 1 1 0

m Simplified: f=X+4+y-z

K-map Example

mPlotf=3-b+b-c-d

b

fla,b,c,d) 'f—f|

0000 | 0001 o101 0100

0oL 0011 0111 n1in

¢ 1010|1011 | 1111 | 1110
0 0
(1
LO0o 1001 1101 1100
0 0 0

m In a 4 variable map:

m 1 variable term occupies 8 cells
m 2 variable terms ocuppy 4 cells
m 3 variable terms occupy 2 cells, etc.

K-map Example

o

m Plot f =

fla,b,c,d) 'f—f|

0000 0001 0101 0100

OO 001l 0111 n1in

Lo 1011 1111 1110

1 1 0

LO0o 1001 1101 1100

1 1 0

a

K-map Example

mPotf=b-d

fla,b,c,d) 'f—f|

0000 0001 0101 0100

OO 0011 0111 n1in

Lo 1011 1111 1110

1 0 0

LO0o 1001 1101 1100

1 0 0

a

K-map Example

m Simplify f =3a-bd+b-c-d+a-b-c-d+c-d

t
—

fla,b,c,d) 'f—f|

0000 0001 01n1 n1on

0oL 001l 0111 n1in

Lo 1011 1111 1110

LO0o 1001 1101 1100

0 0 0

POS Simplification

m Note that the previous examples yielded simplified expressions

in the SOP form
m Suitable for implementations using AND followed by OR gates,
or only NAND gates
m Sometimes we may wish to get a simplified expression in POS
form
m Suitable for implementations using OR followed by AND gates,
or only NOR gates
m To do this we group zeros in the map, then apply DeMorgan's
and complement

POS Example

m Simplify f =3-b+b-¢-d into POS form

b

fla,b,c,d) k———ji———ﬂ

o000 | 0001 0101 0100

0oL 0011 0111 n1in

¢ 1010|1011 | 1111 | 1110
0 0
(1
LO0o 1001 1101 1100
0 0

m Simplified: f=b+a-c+a-d
m Applying DeMorgan's: f = b-(a+¢)-(a+d)

Expressions in POS Form

Apply DeMorgan's and take the complement, that is, f is now
in SOP form

Fill in zeros in table, that is, plot f
Fill remaining cells with ones, that is, plot f

Simplify in the usual way by grouping ones to simplify f

Don’t Care Conditions

m Sometimes we do not care about the output value of a
combinational logic circuit, for example, if certain input
combinations can never occur.

m These are called don't care conditions

m In a simplification they may be treated as 0 or 1 depending on
which gives the simplest result

Don't Care Conditions Example

m Simplify the function f =3-b-d+3a-c-d+a-c-d with
don't care conditionsa-b-¢-d,a-b-c-d,a-b-¢-d
b
—
fla,b, e, d) d

0000 0001 01n1 n1on

00 001l 0111 n1in

¢ 1010|1011 | 1111 | 1110
0 1
(1
LO0o 1001 1101 1100
0 0 0

m Simplified: f =3-b+c-dorf=a-d+c-d

K-map Definitions

Cover - a term is said to cover a minterm if that minterm is
part of that term

Prime implicant - a term that cannot be further combined

Essential term - a prime implicant that covers a minterm that
no other prime implicant covers

Covering set - a minimum set of prime implicants which
includes all essential terms plus any other prime implicants
required to cover all minterms

Combinational Circuit Example

Bit equal

— eq

m Truth table

a b out
0 0 1
0 1 0
1 0 O
1 1 1

Half Adder

m Adds two single bit binary numbers a and b (note: no carry
input)

m Truth table

a b cou sum
0 0 O 0
0 1 0 1
1 0 O 1
1 1 1 0

Full adder

m Adds two single bit numbers a and b (note: with a carry input)

m Truth table

Cn a b cout sum
0 0 0 o 0
0 0 1 0 1
0O 1 .0 O 1
0 1 1 1 0
1 0 0 O 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Ripple Carry Adder

m The half adder and full adder implement two bit binary
addition with and without carry-in

m In general, we need to add two n bit binary numbers
m The ripple carry adder is n full adders cascaded together.

m Example: 4 bit adder

m Note: if a is complemented and ¢y set to 1, then the operation
isss=b—a

Bit-Level Multiplexor

m A bit-level multiplexor has data signals a and b and a control
signal ¢ outputs a or b depending on ¢

m Truth table

a b ¢ out
0 0 0 0¢(b)
0 0 1 0¢(a)
0 1 0 1(b)
0 1 1 0¢(a)
1 0 0 0¢(b)
1 0 1 1(a)
1 1 0 1(b)
1 1 1 1(a)

Bit-Level Multiplexor

Bit MUX

— out

Arithmetic Logic Unit

m Combinational logic — a more complex version of a multiplexor
m Control signal selects function computed
m Also computes condition codes

m Example: four function ALU

0 1 2 3
Y Y Y — Y
A “A "A A
L —Xx+Y L—Xx-vY L —XsaY L =X~y
U u u U
X B X B X —s8 X B

Memory Elements

Sequential logic has a memory

A memory stores data

The snapshot of the memory is called the state

A one bit memory is called bistable, that is, it has two internal
states

Flip-flops and latches are implementations of bistables

RS Latch

m An RS latch is a memory element with two inputs: reset (R)
and set (S), and two outputs: @ and Q

S R @ @ comment
0 0 @ @ hold

0 1 0 1 reset

1 0 1 0 set

1 1 0 0 illegal

where @ is the next state and @ is the current state.

RS Latch

RS Latch State Transition Table

m A state transition table is a way of viewing the operation of an
RS latch.

RS R @ comment
0 0 0 0 hold

0 0 1 0 reset

0 1 0 1 set

0 1 1 0 illegal

1 0 0 1 hold

1 0 1 0 vreset

1 1 0 1 set

1 1 1 0 illegal

Clocks and Synchronous Circuits

m The RS latch output state changes occur directly in response to
changes in the inputs. This is called asynchronous operation.

m Most sequential circuits employ synchronous operation.

m The output is constrained to change only at a time specified by
a global enabling signal
m This signal is generally called the system clock

m The clock is typically a square wave signal at a particular
frequency that imposes order on the state changes.

Gated RS Latch

m The RS latch can be modified to only change state when a
valid enable signal (such as from the system clock) is present.

Qn

EN

Registers

m Store a word of data
m Different from program registers seen in assembly code

m Collection of edge-triggered latches (one for every bit in word)
m Loads input on rising edge of clock

Register Operation

m Stores data bits
m Generally acts as a barrier between input and output
m As clock rises, loads input

State = x State =y

Rising
= clock =

e

Input =y Output = x Output =y

State Machine Example

m Accumulator circuit
m Load or accumulate on each cycle

Comb. Logic
0

Out

Random-Access Memory

m Stores multiple words of memory

m Address input specifies which word to read or write
m Register file

m Holds values of program registers

vl
Register

Read ports file

Ly Wrile port

B fe)e

Clack

Register File Timing

m Reading

m Like combinational logic

m Output generated based on input address (after some delay)
m Writing

m Like register

m Update only as clock rises

Summary

m Computation
m Performed by combinational logic
m Computes Boolean functions
m Continuously reacts to input changes

m Storage

m Registers
m Hold single words
m Loaded as clock rises

m Random-access memories
m Hold multiple words
m Can have multiple read or write ports
m Read a word when address input changes
m Write word as clock rises

