
Instruction Set Architecture
CPSC 235 - Computer Organization

References

Slides adapted from CMU

http://www.cs.cmu.edu/afs/cs/academic/class/15349-s02/3e/www/

Instruction Set Architecture (ISA)

Assembly Language View
Processor state (registers, memory, etc.)
Instructions

Layer of Abstraction
Above: how to program machine

Processor executes instructions in a sequence
Below: what needs to be built

Use a variety of methods to make it run fast
For example, execute multiple instructions simultaneously

Y86-64 ISA

The Y86-64 processor is a simple Instruction Set Architecture
based on x86-64

Fewer data types, instructions, and addressing modes
Simple byte-level encoding
ISA sufficiently complete to write programs that manipulate
integer data

Good example for processor design; just complicated enough to
show the challenges involved in implementation

Y86-64 Processor State

Program registers
15 64-bit registers (omit %r15)

Condition codes
Single bit flags set by arithmetic or logical instructions
Zero (ZF), Negative (SF), Overflow (OF)

Program Counter
Indicates address of next instruction

Program status
Indicates either normal operation or some error condition

Memory
Byte-addressable storage array
Words stored in little-endian byte order

Y86-64 Instruction set

Byte 0 1 2 3 4 5 6 7 8 9

halt 0:0
nop 1:0
cmovXX rA, rB 2:n rA:rB
irmovq V, rB 3:0 F:rB V V V V V V V V
rmmovq rA, D(rB) 4:0 rA:rB D D D D D D D D
mrmovq D(rB), rA 5:0 rA:rB D D D D D D D D
OPq rA, rB 6:n rA:rB
jXX L 7:n L L L L L L L L
call L 8:0 L L L L L L L L
ret 9:0
pushq rA A:0 A:F
popq rA B:0 A:F

Y86-64 Instructions

Format
1-10 bytes of information read from memory

Can determine length from first byte
Not as many instruction types, and simpler encoding than with
x86-64

Each accesses and modifies some part(s) of the program state

cmovXX Instructions

Byte 0 1 2 3 4 5 6 7 8 9

rrmovq rA, rB 2:0 rA:rB
cmovle rA, rB 2:1 rA:rB
cmovl rA, rB 2:2 rA:rB
cmove rA, rB 2:3 rA:rB
cmovne rA, rB 2:4 rA:rB
cmovge rA, rB 2:5 rA:rB
cmovg rA, rB 2:6 rA:rB

OPq Instructions

Byte 0 1 2 3 4 5 6 7 8 9

addq rA, rB 6:0 rA:rB
subq rA, rB 6:1 rA:rB
andq rA, rB 6:2 rA:rB
xorq rA, rB 6:3 rA:rB

jXX Instructions

Byte 0 1 2 3 4 5 6 7 8 9

jmp L 7:0 L L L L L L L L
jle L 7:1 L L L L L L L L
jl L 7:2 L L L L L L L L
je L 7:3 L L L L L L L L
jne L 7:4 L L L L L L L L
jge L 7:5 L L L L L L L L
jg L 7:6 L L L L L L L L

Encoding Registers

Each register has 4-bit ID

%rax 0 %r8 8
%rcx 1 %r9 9
%rdx 2 %r10 A
%rbx 3 %r11 B
%rsp 4 %r12 C
%rbp 5 %r13 D
%rsi 6 %r14 E
%rdi 7 F

Register ID 15 (0xF) indicates “no register”
This will be used in the hardware design

Instruction Example

Addition instruction
generic form: addq rA, rB
encoded representation: 60 rA rB

Add value in register rA to that in register rB
store result in register rB
Note that Y86-64 only allows addition to be applied to register
data

Set condition codes based on result

Example: addq %rax, %rsi, encoding: 60 06

Two-byte encoding
first indicates instruction type
second gives source and destination registers

Arithmetic and Logical Operations

Referred to generically as “OPq”

Encodings differ only by “function code”
Low-order 4 bytes in first instruction word

Set condition codes as side effect

Move Operations

Instruction Source Destination

rrmovq rA, rB Register Register
irmovq V, rB Immediate Register
rmmovq rA, D(rB) Register Memory
mrmovq D(rA), rB Memory Register

Similar to x86-64 movq instruction
Simpler format for memory addresses
Give different names to keep them distinct

Move Instruction Examples

x86-64 Y86-64

movq $0xabcd, %rdx irmovq $0xabcd, %rdx
movq %rsp, %rbx% rrmovq %rsp, %rbx
movq -12(%rbp), %rcx mrmovq -12(%rbp), %rcx
movq %rsi, 0x41c(%rsp) rmmovq %rsi, 0x41c(%rsp)

Move Instruction Examples

Y86-64 Encoding

irmovq $0xabcd, %rdx 30 82 cd ab 00 00 00 00 00 00
rrmovq %rsp, %rbx 20 43
mrmovq -12(%rbp), %rcx 50 15 f4 ff ff ff ff ff ff ff
rmmovq %rsi, 0x41c(%rsp) 40 64 1c 04 00 00 00 00 00 00

Conditional Move Instructions

Referred to generically as “cmovXX”

Encodings differ only by “function code”

Based on values of condition codes

Variants of rrmovq instruction
conditionally copy value from source to destination

Jump Instructions

Referred to generically as “jXX”
Encodings differ only by “function code”
Based on values of condition codes
Same as x86-64 counterparts
Encode full destination address

Unlike PC-relative addressing in x86-64

Y86-64 Program Stack

Region of memory holding program data
Used in Y86-64 (and x86-64) for supporting procedure calls
Stack top indicated by %rsp
Stack grows toward lower addresses

Top element is at highest address in the stack
When pushing, must first decrement the stack pointer
After popping, increment stack pointer

Stack Operations

pushq rA: A 0 rA F
Decrement %rsp by 8
Store word from rA to memory at %rsp

popq rA: B 0 rA F
Read word from memory at %rsp
Save in rA
Increment %rsp by 8

Subroutine Call and Return

call Dest
push address of next instruction on the stack
start executing instructions at Dest

ret
Pop value from stack
Use as address for next instruction

Miscellaneous Instructions

nop: 1 0
Do nothing (no operation)

halt: 0 0
Stop executing instructions
x86-64 has a comparable instruction but cannot execute it in
user mode
Encoding ensures that program hitting memory initialized to
zero will halt

Status Conditions

Mnemonic Code Comment

AOK 1 Normal operation
HLT 2 Halt instruction encountered
ADR 3 Bad address (either instruction or data) encountered
INS 4 Invalid instruction encountered

Desired behavior
If AOK keep going
Otherwise, stop program execution

Y86-64 Sample Program Structure
init: # Initialization

...
call Main
halt

.align 8 # Program data
array:

...
Main: # Main function

...
call len

len:
....

.pos 0x100 # Placement of stack
Stack:

Y86-64 Sample Program Structure

Program starts at address 0

Must set up stack
Location
Pointer values
Make sure code is not overwritten

Must initialize data

Y86-64 Sample Program Structure
init:

Set up stack pointer
irmovq Stack, %rsp
Execute main program
call Main
Terminate
halt

Array of 4 elements + terminating 0
.align 8

Array:
.quad 0x000d000d000d000d
.quad 0x00c000c000c000c0
.quad 0x0b000b000b000b00
.quad 0xa000a000a000a000
.quad 0

CISC Instruction Sets

Complex Instruction Set Computer

Stack-oriented instruction set
Use stack to pass arguments, save program counter
Explicit push and pop instructions

Arithmetic instructions can access memory

Condition Codes
Set as side effect of arithmetic and logical instructions

RISC Instruction Sets

Reduced Instruction Set Computer

Fewer, simpler instructions
Might take more to get given task done
Can execute them with small and fast hardware

Register-oriented instruction set
Many more (typically 32) registers
Used for arguments return pointer, temporaries

Only load and store instructions can access memory

No condition codes
Test instructions return 0/1 in register

Summary

Y86-64 Instruction Set Architecture
Similar state and instructions as x86-64
Simpler encodings
Somewhere between CISC and RISC

How important is ISA Design?
Less now than before; with enough hardware can make almost
anything fast

