Floating Point

CPSC 235 - Computer Organization

References

m Slides adapted from CMU

http://www.cs.cmu.edu/~213/schedule.html

Outline

Background: fractional binary numbers
IEEE floating point standard

Example and properties

Rounding, addition, and multiplication
Floating point in C

Summary

Fractional Binary Numbers

m Representation

m Bits to the right of “binary point” represent fractional powers of
2

m Represents rational number: ZL:_J. by - 2k

om
om-1

4

b, b, *** by by by .b,b,ybs *** b, b,

m m—1
12—
1/4 vee

1/8

17201
12"

Fractional Binary Number Examples

Value Representation

23/4 10111 =4+ 1+ 1/2+ 1/4
23/8 10111 =2+ 1/2 + 1/4 + 1/8
23/16 1.0111 =1+ 1/4 + 1/8 + 1/16

m Observations
m Divide by 2 by shifting right (unsigned)
m Multiply by 2 by shifting left

m Numbers of form 0.1111.. ., are just below 1.0

Representable Numbers

m Limitation 1
m Can only exactly represent numbers of the form
m Other rational numbers have repeating bit representations
m Example
m 1/3 = 0.01010101[01] .. .»
m Limitation 2
m Just one setting of binary point within the w bits

m limited range of numbers

IEEE Floating Point

m |EEE Standard 754

m Established in 1985 as uniform standard for floating point
arithmetic

m Supported by all major CPUs
m Driven by numerical concerns
m Nice standards for rounding, overflow, underflow

m Difficult to make fast in hardware

Floating Point Representation

m Numerical Form: (—1)*- M- 2E
m sign bit s determines whether number is negative or positive
m significand M normally a fractional value in range [1.0,2.0)
m exponent E weights value by power of two

m Encoding:
m most significant bit is sign bit s
m exp field encodes E (but is not equal to E)

m frac field encodes M (but is not equal to M)

Precision options

m Single precision: 32 bits
m exp field is 8 bits
m frac field is 23 bits

m Double precision: 64 bits
m exp field is 11 bits
m frac field is 52 bits

Single precision
3130 2322 0

|s| exp | frac

Double precision

6362 5251 32
|s| exp frac (51:32) |
31 0

| frac (31:0) |

Floating Point Numbers

m Three different “kinds” of floating point numbers based on the
exp field:

m normalized: exp bits are not all ones and not all zeros
m denormalized: exp bits are all zero
m special: exp bits are all one

Normalized Values

m Exponent coded as a biased value: E = exp — bias
m exp: unsigned value of exp field
m bias = 2k=1 — 1, where k is number of exponent bits
m Significand coded with implied leading 1: M = 1.xx...xo
B xxx...x: bits of frac field
m minimum when frac = 000...0 (M = 1.0)
m maximum when frac =111...1 (M =2.0—¢)

m get extra leading bit for “free”

Normalized Encoding Example

m Value: float F = 15213.0;

m 1521350 = 11101101101101, = 1.1101101101101, x 2%3
m Significand

m M=1.1101101101101

m frac = 11011011011010000000000
m Exponent

m £=13

m bias = 127

m exp = 140 = 10001100,

Denormalized Values

m Exponent value: E = 1 — bias (instead of exp — bias)

m Significand coded with implied leading 0: M = 0.xxx...xo
m xxx...x: bits of frac

m Cases

m exp=000...0,frac =000...0

B represents zero value

m Note distinct values: +0 and —0
m exp=000...0,frac #000...0

m numbers closest to 0.0

m equally spaced

Special Values

m Case: exp=111...1,frac =000...0
m represents value oo (infinity)
m operation that overflows
m both positive and negative
m examples: 1.0/0.0 = -1.0/-0.0 = 400, 1.0/-0.0 = —c0
m Case: exp=111...1,frac #000...0
m Not-a-Number (NaN)
m represents case when no numeric value can be determined

m examples: sqrt(-1), co = 00, 0o X 0

C float Decoding Example 1

float value = 0xCOA00000

binary: 1100 0000 1010 0000 0000 0000 0000 0000

E = exp — bias = 129 — 127 = 249

s = 1 negative number

M = 1.01000000000000000000000 = 1 + 1/4 = 1.2519
v=(-1) - M-2E = (-1)!.1.25.22 = 5y

C float Decoding Example 2

float value = 0x001C0000

binary: 0000 0000 0001 1100 0000 0000 0000 0000
E = exp — bias =1 — 127 = —12649

s = 0 positive number

M = 0.00111000000000000000000 = 1/8 +1/16 + 1/32 =
7-27°

v=(-1)-M-2E =(-1)0.7.275.271206 = 7. 27131

Tiny Floating Point Example

m 8-bit floating point representation
m the sign bit is the most significant bit
m the next four bits are the exp, with a bias of 7
m the last three bits are the frac
m Same general form as IEEE format
m normalized, denormalized

m representation of 0, NaN, infinity

Dynamic Range (s = 0)

s exp frac E wvalue
0 0000 000 -6 0
closest to zero 0 0000 001 -6 1/512
largest denorm 0 0000 111 -6 7/512
smallest norm 0 0001 000 -6 8/512
closest to 1 below 0 0110 111 -1 15/16
0 0111 000 O 1
closest to 1 above 0 0111 001 O 9/8
largest norm 0 1110 111 7 240
0 1111 000 - inf

Special Properties of the I[EEE Encoding

m Floating point zero same as integer zero
m Can (almost) use unsigned integer comparison
m must first compare sign bits
m must consider -0 = 0
m NaNs are problematic
m Otherwise OK
m Denormalized vs. normalized

m Normalized vs. infinity

Floating Point Operations: Basic Idea

m x +¢y = round(x +y)
m x Xfy = round(x X y)
m Basic idea
m first compute exact result
m make it fit into the desired precision
m possibly overflow if exponent is too large

m possibly round to fit into frac

Rounding

m Rounding modes (illustrate with rounding USD)

$1.40 $1.60 $1.50 $2.50 -$1.50

towards zero $1 $1 $1 $2 -$1
round down (—o0) $1 $1 $1 $2 -$2
round up (00) $2 $2 $2 $3 -$1
nearest even $1 $2 $2 $2 -$2

m Nearest even rounds to the nearest, but if half-way in-between
then round to nearest even

Closer Look at Round-To-Even

m Default Rounding Mode
m Difficult to get any other kind without dropping into assembly
m All others are statistically biased

m sum of set of positive numbers will consistently be over- or
under- estimated

m Applying to other decimal places / bit positions

m when exactly halfway between two possible values, round so
that least significant digit is even

m Example round to the nearest hundredth: 7.8950000 = 7.90
(halfway — round up)

m Example round to the nearest hundredth: 7.8850000 = 7.88
(halfway — round down)

Rounding Binary Numbers

m Binary Fractional Numbers
m “even” when least significant bit is 0

m “half way” when bits to right of rounding position = 100.. .,

m Examples: round to the nearest 1/4 (2 bits right of binary
point)

value binary rounded action rounded value
2% 10.00011 10.00 down 2
2% 10.00110 10.01 up 27
2% 10.11100 11.00 up 3
22 10.10100 10.10 down 21

Rounding

m Terminology
m guard bit: least significant bit of result
m round bit: the first bit removed
m sticky bit: OR of remaining bits
m Round up conditions
m round = 1, sticky =1 —-> 0.5

m guard = 1, round = 1, sticky = 0 — round to even

Rounding Example

m Round to three bits after the binary point

fraction GRS Incr? Rounded

1.0000000 000 N 1.000
1.1010000 100 N 1.101
1.0001000 010 N 1.000
1.0011000 110 Y 1.010
Y
Y

1.0001010 011 1.001
1.1111100 111 10.000

Floating Point Multiplication

m (—1)%t- M1-2B x (—1)2.- M2 2F2
m Exact result: (—1)s- M -2F
m sign s: s1 ~ s2
m significand M: M1 x M2
m exponent E: E1+ E2
m Fixing
m If M > 2, shift M right, increment E
m If E out of range, overflow

m Round M to fit frac precision

Floating Point Addition

m (1)t M1-2F 4 (—1)%2. M2 2E2 Assume E1 > E2
m Exact result: (—1)°-M-2F
m sign s, significand M
m result of signed align and add, that is align at binary point
m exponent E: E1
m Fixing
m If M > 2, shift M right, increment E
m If M <1, shift M left k positions, decrement E by k
m If E out of range, overflow

m Round M to fit frac precision

Properties of Floating Point Addition

m Compare to those of Abelian Group
m Closed under addition, but may generate infinity or NaN
m Commutative
m Not associative
m 0 is additive identity

m Almost every element has an additive inverse, except for
infinities and NaNs

m Monotonicity

ma>b— a+c> b+ c except for infinities and NaNs

Properties of Floating Point Multiplication

m Compare to Commutative Ring
m Closed under multiplication, but may generate infinity or NaN
m Commutative
m Not associative: possibility of overflow, inexactness of rounding
m 1 is multiplicative identity
m Multiplication does not distribute over addition

m Monotonicity

ma>bAc>0— axc> bx*c except for infinities and NaNs

Floating Point in C

m C guarantees two levels
m float: single precision
m double: double precision
m Conversions / Casting

m Casting between int, float, and double changes bit
representation

m double/float to int

B truncates fractional part (like rounding to zero)

m not defined when out of range or NaN
m int to double

m exact conversion, as long as int has < 53 bit word size
m int to float

m will round according to rounding mode

Summary

IEEE Floating Point has clear mathematical properties
Represents numbers of form M x 2F

One can reason about operations independent of
implementation

m as if computed with perfect precision and then rounded
Not the same as real arithmetic
m violates associativity and distributivity

m makes life difficult for compilers and serious numerical
applications programmers

