
Floating Point
CPSC 235 - Computer Organization

References

Slides adapted from CMU

http://www.cs.cmu.edu/~213/schedule.html

Outline

Background: fractional binary numbers

IEEE floating point standard

Example and properties

Rounding, addition, and multiplication

Floating point in C

Summary

Fractional Binary Numbers
Representation

Bits to the right of “binary point” represent fractional powers of
2

Represents rational number:
∑i

k=−j bk · 2k

Fractional Binary Number Examples

Value Representation

23/4 101.11 = 4 + 1 + 1/2 + 1/4
23/8 10.111 = 2 + 1/2 + 1/4 + 1/8
23/16 1.0111 = 1 + 1/4 + 1/8 + 1/16

Observations
Divide by 2 by shifting right (unsigned)

Multiply by 2 by shifting left

Numbers of form 0.1111 . . .2 are just below 1.0

Representable Numbers

Limitation 1
Can only exactly represent numbers of the form x

2k

Other rational numbers have repeating bit representations

Example

1/3 = 0.01010101[01] . . .2

Limitation 2
Just one setting of binary point within the w bits

limited range of numbers

IEEE Floating Point

IEEE Standard 754
Established in 1985 as uniform standard for floating point
arithmetic

Supported by all major CPUs

Driven by numerical concerns
Nice standards for rounding, overflow, underflow

Difficult to make fast in hardware

Floating Point Representation

Numerical Form: (−1)s · M · 2E

sign bit s determines whether number is negative or positive

significand M normally a fractional value in range [1.0, 2.0)

exponent E weights value by power of two

Encoding:
most significant bit is sign bit s

exp field encodes E (but is not equal to E)

frac field encodes M (but is not equal to M)

Precision options
Single precision: 32 bits

exp field is 8 bits

frac field is 23 bits

Double precision: 64 bits
exp field is 11 bits

frac field is 52 bits

Floating Point Numbers

Three different “kinds” of floating point numbers based on the
exp field:

normalized: exp bits are not all ones and not all zeros
denormalized: exp bits are all zero
special: exp bits are all one

Normalized Values

Exponent coded as a biased value: E = exp − bias
exp: unsigned value of exp field

bias = 2k−1 − 1, where k is number of exponent bits

Significand coded with implied leading 1: M = 1.xx . . . x2

xxx . . . x : bits of frac field

minimum when frac = 000 . . . 0 (M = 1.0)

maximum when frac = 111 . . . 1 (M = 2.0 − ϵ)

get extra leading bit for “free”

Normalized Encoding Example

Value: float F = 15213.0;

1521310 = 111011011011012 = 1.11011011011012 × 213

Significand
M = 1.1101101101101

frac = 11011011011010000000000

Exponent
E = 13

bias = 127

exp = 140 = 100011002

Denormalized Values

Exponent value: E = 1 − bias (instead of exp − bias)

Significand coded with implied leading 0: M = 0.xxx . . . x2

xxx . . . x : bits of frac

Cases
exp = 000 . . . 0, frac = 000 . . . 0

represents zero value

Note distinct values: +0 and −0

exp = 000 . . . 0, frac ̸= 000 . . . 0

numbers closest to 0.0

equally spaced

Special Values

Case: exp = 111 . . . 1, frac = 000 . . . 0
represents value ∞ (infinity)

operation that overflows

both positive and negative

examples: 1.0/0.0 = -1.0/-0.0 = +∞, 1.0/-0.0 = −∞

Case: exp = 111 . . . 1, frac ̸= 000 . . . 0
Not-a-Number (NaN)

represents case when no numeric value can be determined

examples: sqrt(-1), ∞ = ∞, ∞ × 0

C float Decoding Example 1

float value = 0xC0A00000

binary: 1100 0000 1010 0000 0000 0000 0000 0000

E = exp − bias = 129 − 127 = 210

s = 1 negative number

M = 1.01000000000000000000000 = 1 + 1/4 = 1.2510

v = (−1)s · M · 2E = (−1)1 · 1.25 · 22 = −510

C float Decoding Example 2

float value = 0x001C0000

binary: 0000 0000 0001 1100 0000 0000 0000 0000

E = exp − bias = 1 − 127 = −12610

s = 0 positive number

M = 0.00111000000000000000000 = 1/8 + 1/16 + 1/32 =
7 · 2−5

v = (−1)s · M · 2E = (−1)0 · 7 · 2−5 · 2−126 = 7 · 2−131

Tiny Floating Point Example

8-bit floating point representation
the sign bit is the most significant bit

the next four bits are the exp, with a bias of 7

the last three bits are the frac

Same general form as IEEE format
normalized, denormalized

representation of 0, NaN, infinity

Dynamic Range (s = 0)

s exp frac E value

0 0000 000 -6 0
closest to zero 0 0000 001 -6 1/512
largest denorm 0 0000 111 -6 7/512
smallest norm 0 0001 000 -6 8/512
closest to 1 below 0 0110 111 -1 15/16

0 0111 000 0 1
closest to 1 above 0 0111 001 0 9/8
largest norm 0 1110 111 7 240

0 1111 000 - inf

Special Properties of the IEEE Encoding

Floating point zero same as integer zero

Can (almost) use unsigned integer comparison
must first compare sign bits

must consider -0 = 0

NaNs are problematic

Otherwise OK

Denormalized vs. normalized

Normalized vs. infinity

Floating Point Operations: Basic Idea

x +f y = round(x + y)

x ×f y = round(x × y)

Basic idea
first compute exact result

make it fit into the desired precision

possibly overflow if exponent is too large

possibly round to fit into frac

Rounding

Rounding modes (illustrate with rounding USD)

$1.40 $1.60 $1.50 $2.50 -$1.50

towards zero $1 $1 $1 $2 -$1
round down (−∞) $1 $1 $1 $2 -$2
round up (∞) $2 $2 $2 $3 -$1
nearest even $1 $2 $2 $2 -$2

Nearest even rounds to the nearest, but if half-way in-between
then round to nearest even

Closer Look at Round-To-Even

Default Rounding Mode
Difficult to get any other kind without dropping into assembly

All others are statistically biased

sum of set of positive numbers will consistently be over- or
under- estimated

Applying to other decimal places / bit positions

when exactly halfway between two possible values, round so
that least significant digit is even

Example round to the nearest hundredth: 7.8950000 = 7.90
(halfway – round up)

Example round to the nearest hundredth: 7.8850000 = 7.88
(halfway – round down)

Rounding Binary Numbers

Binary Fractional Numbers
“even” when least significant bit is 0

“half way” when bits to right of rounding position = 100 . . .2

Examples: round to the nearest 1/4 (2 bits right of binary
point)

value binary rounded action rounded value

2 3
32 10.00011 10.00 down 2

2 3
16 10.00110 10.01 up 21

4
27

8 10.11100 11.00 up 3
25

8 10.10100 10.10 down 21
2

Rounding

Terminology
guard bit: least significant bit of result

round bit: the first bit removed

sticky bit: OR of remaining bits

Round up conditions
round = 1, sticky = 1 →> 0.5

guard = 1, round = 1, sticky = 0 → round to even

Rounding Example

Round to three bits after the binary point

fraction GRS Incr? Rounded

1.0000000 000 N 1.000
1.1010000 100 N 1.101
1.0001000 010 N 1.000
1.0011000 110 Y 1.010
1.0001010 011 Y 1.001
1.1111100 111 Y 10.000

Floating Point Multiplication

(−1)s1 · M1 · 2E1 × (−1)s2 · M2 · 2E2

Exact result: (−1)s · M · 2E

sign s: s1 ˆ s2

significand M: M1 × M2

exponent E : E1 + E2

Fixing
If M ≥ 2, shift M right, increment E

If E out of range, overflow

Round M to fit frac precision

Floating Point Addition

(−1)s1 · M1 · 2E1 + (−1)s2 · M2 · 2E2, Assume E1 > E2

Exact result: (−1)s · M · 2E

sign s, significand M

result of signed align and add, that is align at binary point

exponent E : E1

Fixing
If M ≥ 2, shift M right, increment E

If M < 1, shift M left k positions, decrement E by k

If E out of range, overflow

Round M to fit frac precision

Properties of Floating Point Addition

Compare to those of Abelian Group
Closed under addition, but may generate infinity or NaN

Commutative

Not associative

0 is additive identity

Almost every element has an additive inverse, except for
infinities and NaNs

Monotonicity
a ≥ b → a + c ≥ b + c except for infinities and NaNs

Properties of Floating Point Multiplication

Compare to Commutative Ring
Closed under multiplication, but may generate infinity or NaN

Commutative

Not associative: possibility of overflow, inexactness of rounding

1 is multiplicative identity

Multiplication does not distribute over addition

Monotonicity
a ≥ b ∧ c ≥ 0 → a ∗ c ≥ b ∗ c except for infinities and NaNs

Floating Point in C
C guarantees two levels

float: single precision

double: double precision

Conversions / Casting
Casting between int, float, and double changes bit
representation

double/float to int

truncates fractional part (like rounding to zero)

not defined when out of range or NaN

int to double

exact conversion, as long as int has ≤ 53 bit word size

int to float

will round according to rounding mode

Summary

IEEE Floating Point has clear mathematical properties

Represents numbers of form M × 2E

One can reason about operations independent of
implementation

as if computed with perfect precision and then rounded

Not the same as real arithmetic
violates associativity and distributivity

makes life difficult for compilers and serious numerical
applications programmers

