
Dynamic Memory Allocation:
Basic Concepts

CPSC 235 - Computer Organization



References

Slides adapted from CMU

http://www.cs.cmu.edu/~213/schedule.html


Dynamic Memory Allocation

Programmers use dynamic memory allocators (such as malloc)
to acquire virtual memory (VM) at run time.

For data structures where the size is only known at runtime
Dynamic memory allocators manage an area of process VM
known as the heap.



Dynamic Memory Allocation

Allocator maintains the heap as a collection of variable sized
blocks, which are either allocated or free.

Types of allocators
Explicit allocator: application allocates and frees space (for
example, malloc and free in C)
Implicit allocator: application allocates, but does not free space
(for example, new and garbage collection in Java)

This lecture: explicit memory allocation



The malloc Package

void *malloc(size_t size)
Success: returns a pointer to a memory block of at least size
bytes aligned to a 16-byte boundary (on x86-64); if size == 0,
returns NULL
Unsuccessful: returns NULL and sets errno to ENOMEM

void free(void *p)
Returns the block pointed at by p to pool of available memory
p must come from a previous call to malloc, calloc, or
realloc

Other functions:
calloc: version of malloc that initializes allocated block to
zero
realloc: changes the size of a previously allocated block
sbrk: used internally by allocators to grow or shrink the heap



malloc Example
#include <stdio.h>
#include <stdlib.h>

void foo(long n) {
long i, *p;

/* Allocate a block of n longs */
p = (long *) malloc(n * sizeof(long));
if (p == NULL) {

perror("malloc");
exit(0);

}

/* Initialize allocated block */
for (i=0; i<n; i++)

p[i] = i;
/* Do something with p */
...

/* Return allocated block to the heap */
free(p);

}



Sample Implementation

Code (location: CS:APP3e Code Examples
File: mm.c
Manges fixed size heap
Functions mm_malloc and mm_free

Features
Based on words of 8 bytes each
Pointers returned by malloc are double-word aligned
Compile and run tests with command interpreter

http://csapp.cs.cmu.edu/3e/code.html


Constraints

Applications
Can issue arbitrary sequence of malloc and free requests
free request must be to a malloc’d block

Explicit Allocators
Cannot control number or size of allocated blocks
Must respond immediately to malloc requests
Must allocate blocks from free memory
Must align blocks to satisfy alignment requirements
Can manipulate and modify only free memory
Cannot move the allocated blocks once they are malloc’d



Performance Goal: Throughput

Given some sequence of malloc and free requests:

R0, R1, . . . , Rk , . . . , Rn−1

Goals: maximize throughput and peak memory utilization
these goals are often conflicting

Throughput:
Number of completed requests per unit time
Example:

5,000 malloc calls and 5,000 free calls in 10 seconds
Throughput is 1,000 operations per second



Performance Goal: Minimize Overhead
Given some sequence of malloc and free requests:

R0, R1, . . . , Rk , . . . , Rn−1

Definition: aggregate payload Pk

malloc(p) results in a block with a payload of p bytes
After request Rk has completed, the aggregate payload Pk is
the sum of currently allocated payloads

Definition: current heap size Hk

Assume Hk is monotonically non-decreasing, that is, the heap
only grows when the allocator uses sbrk

Definition: Overhead after k + 1 requests
Fraction of heap space not used for program data
Ok = Hk/(maxi≤kPi) − 1



malloc Heap Visualization Example



Fragmentation

Fragmentation causes poor memory utilization

Internal fragmentation: For a given block, internal
fragmentation occurs if payload is smaller than block size

Caused by
overhead of maintaining heap data structures
padding for alignment purposes
explicit policy decisions (for example, to return a big block to
satisfy a small request)

Depends only on the pattern of previous requests

External fragmentation: occurs when there is enough aggregate
heap memory, but no single free block is large enough

Amount of external fragmentation depends on the pattern of
future requests (difficult to measure)



Implementation Issues

How do we know how much memory to free given only a
pointer?

How do we keep track of the free blocks?

What do we do with the extra space when allocating a
structure that is smaller than the free block it is place?

How do we pick a block to use for allocation – many might fit?

How do we reuse a block that has been freed?



Knowing How Much to Free

Standard method
Keep the length (in bytes) of a block in the word preceding the
block, including the header
Requires an extra word for every allocated block



Keeping Track of Free Blocks

Method 1: Implicit list using length; links all blocks
Need to tag each block as allocated/free

Method 2: Explicit list among the free blocks using pointers
Need space for pointers

Method 3: Segregated free list
Different free lists for different size classes

Method 4: Blocks sorted by size
Can use a balanced tree with pointers within each free block,
and the length used as a key



Method 1: Implicit Free List

For each block we need both size and allocation status
Could store this information in two words (wasteful)

Standard trick
When blocks are aligned, some low-order address bits are always
zero
Instead of storing the always zero bit, use it as an allocated/free
flag
When reading the size word, the bit must be masked out



Detailed Implicit Free List Example

Allocated blocks: shaded
Free blocks: unshaded
Headers: labeled with “size in words/allocated bit”

Headers are at non-aligned positions
Payloads are aligned



Implicit List: Data Structures

Block declaration

typedef unint64_t word_t;

typedef struct block {
word_t header;
unsigned char payload[0]; // zero length array

} block_t;

Getting payload from block pointer

return (void *) (block->payload);

Getting header from payload

return (void *) ((unsigned char *) bp - offsetof(block_t, payload));



Implicit List: Header access

Getting allocated bit from header

return header & 0x1;

Getting size from header

return header & ~0xfL;

Initializing header

block->header = size | alloc;



Implicit List: Traversing the List

Find next block

static block_t *find_next(block_t *block) {
return (block_t *) ((unsigned char *) block

+ get_size(block));
}



Implicit List: Finding a Free Block
Search list from beginning and choose first free block that fits
(including space for the header)

static block_t *find_fit(size_t asize) {
block_t *block;
for (block = heap_start; block != heap_end;

block = find_next(block))
{

if (!(get_alloc(block)) && (asize <= get_size(block)))
return block;

}
return NULL; // No fit found

}



Implicit List: Finding a Free Block
First fit:

Search list from the beginning and choose the first free block
that fits
Can take linear time in total number of blocks (allocated and
free)
In practice it can cause “splinters” at the beginning of the list

Next fit:
Like first fit, but search the list starting where the previous
search finished
Should often be faster than first fit since it avoids re-scanning
unhelpful blocks
Some research suggests that fragmentation is worse

Best fit:
Search the list and choose the best free block: fits with the
fewest bytes left over
Keeps fragments small; usually improves memory utilization
Will typically run slower than first fit
Still a greedy algorithm; no guarantee of optimality



Implicit List: Allocating in Free Block

Allocating in a free block: splitting
Since allocated space might be smaller than free space, we
might want to split the block



Implicit List: Splitting Free Block

// Warning: This code is incomplete

static void split_block(block_t *block, size_t asize) {
size_t block_size = get_size(block);

if ((block_size - asize) >= min_block_size) {
write_header(block, asize, true);
block_t *block_next = find_next(block);
write_header(block_next, block_size - asize, false);

}
}



Implicit List: Freeing a Block

Simplest implementation:
Need to clear the “allocated” flag
But, can lead to “false fragmentation”



Implicit List: Coalescing

Join (coalesce) with next/previous blocks, if they are free

Coalesce with next block
Simple because of forward search

How do we coalesce with previous block?
How do we know where it starts?
How can we determine whether it is allocated?



Implicit List: Bidirectional Coalescing
Boundary tags

Replicate size/allocated word at “bottom” (end) of free blocks
Allows us to traverse the “list” backwards, but requires extra
space
Important and general technique



Implementation with Footers

Locating footer of current block

const size_t dsize = 2 * sizeof(word_t);

static word_t *header_to_footer(block_t *block) {
size_t asize = get_size(block);
return (word_t *) (block->payload + asize - dsize);

}

Locating footer of previous block

static word_t *find_prev_footer(block_t *block) {
return &(block->header) - 1);

}



Splitting Free Block: Full Version

static void split_block(block_t *block, size_t asize) {
size_t block_size = get_size(block);

if ((block_size - asize) >= min_block_size) {
write_header(block, asize, true);
write_footer(block, asize, true);
block_t *block_next = find_next(block);
write_header(block_next, block_size - asize, false);
write_footer(block_next, block_size - asize, false);

}
}



Constant Time Coalescing (Case 1)



Constant Time Coalescing (Case 2)



Constant Time Coalescing (Case 3)



Constant Time Coalescing (Case 4)



Heap Structure

Dummy footer before first header
Marked as allocated
Prevents accidental coalescing when freeing first block

Dummy header after last footer
Prevents accidental coalescing when freeing final block



Top-Level Malloc Code
const size_t dsize = 2*sizeof(word_t);

void *mm_malloc(size_t size)
{

size_t asize = round_up(size + dsize, dsize);

block_t *block = find_fit(asize);

if (block == NULL)
return NULL;

size_t block_size = get_size(block);
write_header(block, block_size, true);
write_footer(block, block_size, true);

split_block(block, asize);

return header_to_payload(block);
}



Top-Level Free Code

void mm_free(void *bp)
{

block_t *block = payload_to_header(bp);
size_t size = get_size(block);

write_header(block, size, false);
write_footer(block, size, false);

coalesce_block(block);
}



Disadvantages of Boundary Tags

Internal fragmentation

Can it be optimized?
Which blocks need the footer tag?
What does that mean?



No Boundary Tag for Allocated Blocks

Boundary tag needed only for free blocks

When sizes are multiples of 16, have 4 spare bits

Header: Use 2 bits (address bits always zero due to alignment):

(prev_block) << 1 | (curr_block)



Summary of Key Allocator Policies

Placement policy:
First-fit, next-fit, best-fit, etc.
Trades off lower throughput for less fragmentation
Interesting observation: segregated free lists (next lecture)
approximate a best fit placement policy without having to
search entire free list

Splitting policy:
When do we go ahead and split free blocks?
How much internal fragmentation are we willing to tolerate?

Coalescing policy:
Immediate coalescing: coalesce each time free is called
Deferred coalescing: try to improve performance of free by
deferring coalescing until needed



Implicit Lists: Summary

Implementation: very simple

Allocate cost: linear time worst case

Free cost: constant time worst case (even with coalescing)

Memory overhead: depends on placement policy

Not used in practice for malloc/free because of linear time
allocation

The concepts of splitting and boundary tag coalescing are
general to all allocators


